Spring constant of a tuning-fork sensor for dynamic force microscopy

Dennis van Vörden, Manfred Lange, Merlin Schmuck, Nico Schmidt and Rolf Möller
Beilstein J. Nanotechnol. 2012, 3, 809–816. https://doi.org/10.3762/bjnano.3.90

Cite the Following Article

Spring constant of a tuning-fork sensor for dynamic force microscopy
Dennis van Vörden, Manfred Lange, Merlin Schmuck, Nico Schmidt and Rolf Möller
Beilstein J. Nanotechnol. 2012, 3, 809–816. https://doi.org/10.3762/bjnano.3.90

How to Cite

van Vörden, D.; Lange, M.; Schmuck, M.; Schmidt, N.; Möller, R. Beilstein J. Nanotechnol. 2012, 3, 809–816. doi:10.3762/bjnano.3.90

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kort-Kamp, W. J. M.; Murdick, R. A.; Htoon, H.; Jones, A. C. Utilization of coupled eigenmodes in Akiyama atomic force microscopy probes for bimodal multifrequency sensing. Nanotechnology 2022, 33, 455501. doi:10.1088/1361-6528/ac8232
  • Kebei, C.; Liu, Z.; Yuchen, X.; Chunyu, Z.; Gengzhao, X.; Wentao, S.; Xu, K. Numerical analysis of vibration modes of a qPlus sensor with a long tip. Beilstein journal of nanotechnology 2021, 12, 82–92. doi:10.3762/bjnano.12.7
  • Pürckhauer, K.; Maier, S.; Merkel, A.; Kirpal, D.; Giessibl, F. J. Combined atomic force microscope and scanning tunneling microscope with high optical access achieving atomic resolution in ambient conditions. The Review of scientific instruments 2020, 91, 083701. doi:10.1063/5.0013921
  • Dagdeviren, O. E.; Miyahara, Y.; Mascaro, A.; Grutter, P. Calibration of the oscillation amplitude of electrically excited scanning probe microscopy sensors. The Review of scientific instruments 2019, 90, 013703. doi:10.1063/1.5061831
  • Dagdeviren, O. E.; Miyahara, Y.; Mascaro, A.; Enright, T.; Grutter, P. Amplitude dependence of resonance frequency and its consequences for scanning probe microscopy. 2018.
  • Dagdeviren, O. E.; Schwarz, U. D. Optimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis. Beilstein journal of nanotechnology 2017, 8, 657–666. doi:10.3762/bjnano.8.70
  • Wu, Z.; Guo, T.; Tao, R.; Xu, L.; Chen, J.; Fu, X.; Hu, X. The Model Analysis of a Complex Tuning Fork Probe and Its Application in Bimodal Atomic Force Microscopy. Applied Sciences 2017, 7, 121. doi:10.3390/app7020121
  • Hao, L.; Wang, Q.; Peng, P.; Zhenxing, C.; Jiao, W.; Yang, F.; Liu, W.; Wang, R.; He, X. Calibrating conservative and dissipative response of electrically-driven quartz tuning forks. Ultramicroscopy 2016, 174, 106–111. doi:10.1016/j.ultramic.2016.12.015
  • Dagdeviren, O. E.; Schwarz, U. D. Numerical performance analysis of quartz tuning fork-based force sensors. Measurement Science and Technology 2016, 28, 015102. doi:10.1088/1361-6501/28/1/015102
  • Sampson, S. A.; Date, K.; Panchal, S. V.; Ambrale, A.; Datar, S. Investigation of QTF based gas sensors. Sensors and Actuators B: Chemical 2015, 216, 586–594. doi:10.1016/j.snb.2015.04.024
  • Melcher, J.; Stirling, J.; Shaw, G. A. A simple method for the determination of qPlus sensor spring constants. Beilstein journal of nanotechnology 2015, 6, 1733–1742. doi:10.3762/bjnano.6.177
  • Liu, C.-S.; Li, H.-F. Design and Experimental Validation of Novel Force Sensor. IEEE Sensors Journal 2015, 15, 4402–4408. doi:10.1109/jsen.2015.2418331
  • Labidi, H.; Kupsta, M.; Huff, T.; Salomons, M.; Vick, D.; Taucer, M.; Pitters, J. L.; Wolkow, R. A. New fabrication technique for highly sensitive qPlus sensor with well-defined spring constant. Ultramicroscopy 2015, 158, 33–37. doi:10.1016/j.ultramic.2015.06.008
  • Gonzalez, L. M.; Oria, R.; Botaya, L.; Puig-Vidal, M.; Otero, J. Determination of the static spring constant of electrically-driven quartz tuning forks with two freely oscillating prongs. Nanotechnology 2015, 26, 055501. doi:10.1088/0957-4484/26/5/055501
  • Tian, Y.; Navarro, P.; Orrit, M. Physical Review Letters - Single Molecule as a Local Acoustic Detector for Mechanical Oscillators. Physical review letters 2014, 113, 135505. doi:10.1103/physrevlett.113.135505
  • Falter, J.; Stiefermann, M.; Langewisch, G.; Schurig, P.; Hölscher, H.; Fuchs, H.; Schirmeisen, A. Calibration of quartz tuning fork spring constants for non-contact atomic force microscopy: direct mechanical measurements and simulations. Beilstein journal of nanotechnology 2014, 5, 507–516. doi:10.3762/bjnano.5.59
  • Hill, R. J.; Courtney, T. L.; Park, S. D.; Jonas, D. M. Lightweight hollow rooftop mirrors for stabilized interferometry. Optical Engineering 2013, 52, 105103. doi:10.1117/1.oe.52.10.105103
  • Shaw, G. A. Improvement in Uncertainty of Tuning Fork-Based Force Sensor Stiffness Calibration via the Indentation Method Using Direct Determination of Contact and Machine Compliance. MEMS and Nanotechnology, Volume 5; Springer International Publishing, 2013; pp 125–128. doi:10.1007/978-3-319-00780-9_16
  • Stirling, J. Optimal geometry for a quartz multipurpose SPM sensor. Beilstein journal of nanotechnology 2013, 4, 370–376. doi:10.3762/bjnano.4.43
  • Oria, R.; Otero, J.; Gonzalez, L. M.; Botaya, L.; Carmona, M.; Puig-Vidal, M. Finite Element Analysis of Electrically Excited Quartz Tuning Fork Devices. Sensors (Basel, Switzerland) 2013, 13, 7156–7169. doi:10.3390/s130607156
Other Beilstein-Institut Open Science Activities