Reversible mechano-electrochemical writing of metallic nanostructures with the tip of an atomic force microscope

Christian Obermair, Marina Kress, Andreas Wagner and Thomas Schimmel
Beilstein J. Nanotechnol. 2012, 3, 824–830. https://doi.org/10.3762/bjnano.3.92

Cite the Following Article

Reversible mechano-electrochemical writing of metallic nanostructures with the tip of an atomic force microscope
Christian Obermair, Marina Kress, Andreas Wagner and Thomas Schimmel
Beilstein J. Nanotechnol. 2012, 3, 824–830. https://doi.org/10.3762/bjnano.3.92

How to Cite

Obermair, C.; Kress, M.; Wagner, A.; Schimmel, T. Beilstein J. Nanotechnol. 2012, 3, 824–830. doi:10.3762/bjnano.3.92

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Murad Hasan, R. M.; Ding, F.; Sun, J.; Luo, X.; Cox, A. Nanoelectrode Lithography of Silicon Surface by Brass Stamp. Proceedings of the 7th International Conference on Nanomanufacturing (nanoMan2021); Springer Singapore, 2022; pp 239–247. doi:10.1007/978-981-19-1918-3_27
  • Reiser, A.; Schuster, R.; Spolenak, R. Nanoscale electrochemical 3D deposition of cobalt with nanosecond voltage pulses in an STM. Nanoscale 2022, 14, 5579–5588. doi:10.1039/d1nr08409g
  • Ruiz-Zambrana, C. L.; Malankowska, M.; Coronas, J. Metal organic framework top-down and bottom-up patterning techniques. Dalton transactions (Cambridge, England : 2003) 2020, 49, 15139–15148. doi:10.1039/d0dt02207a
  • Hasan, R. M. M.; Politano, O.; Luo, X. Substrate orientation effects on nanoelectrode lithography: ReaxFF molecular dynamics and experimental study. Journal of Physics D: Applied Physics 2020, 53, 295108. doi:10.1088/1361-6463/ab86e2
  • Hasan, R. M. M.; Politano, O.; Luo, X. ReaxFF molecular dynamics simulation study of nanoelectrode lithography oxidation process on silicon (100) surface. Applied Surface Science 2019, 496, 143679. doi:10.1016/j.apsusc.2019.143679
  • Goldmann, A. S.; Boase, N. R. B.; Michalek, L.; Blinco, J. P.; Welle, A.; Barner-Kowollik, C. Adaptable and Reprogrammable Surfaces. Advanced materials (Deerfield Beach, Fla.) 2019, 31, 1902665. doi:10.1002/adma.201902665
  • Xie, F.; Lin, X.; Gross, A.; Evers, F.; Pauly, F.; Schimmel, T. Multiplicity of atomic reconfigurations in an electrochemical Pb single-atom transistor. Physical Review B 2017, 95, 195415. doi:10.1103/physrevb.95.195415
  • Ryu, Y. K.; Garcia, R. Advanced oxidation scanning probe lithography. Nanotechnology 2017, 28, 142003. doi:10.1088/1361-6528/aa5651
  • Heinke, L.; Gliemann, H.; Tremouilhac, P.; Wöll, C. The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications; Wiley-VCH Verlag GmbH & Co. KGaA, 2016; pp 523–550. doi:10.1002/9783527693078.ch17
  • Liu, H.; Hoeppener, S.; Schubert, U. S. Nanoscale Materials Patterning by Local Electrochemical Lithography. Advanced Engineering Materials 2016, 18, 890–902. doi:10.1002/adem.201500486
  • Förste, A.; Pfirrmann, M.; Sachs, J.; Gröger, R.; Walheim, S.; Brinkmann, F.; Hirtz, M.; Fuchs, H.; Schimmel, T. Ultra-large scale AFM of lipid droplet arrays: investigating the ink transfer volume in dip pen nanolithography. Nanotechnology 2015, 26, 175303. doi:10.1088/0957-4484/26/17/175303
  • Kaman, J. Young’s Modulus and Energy Dissipation Determination Methods by AFM, with Particular Reference to a Chalcogenide Thin Film. Periodica Polytechnica Electrical Engineering and Computer Science 2015, 59, 18–25. doi:10.3311/ppee.7865
  • Zhong, S.; Koch, T.; Walheim, S.; Rösner, H.; Nold, E.; Kobler, A.; Scherer, T.; Wang, D.; Kübel, C.; Wang, M.; Hahn, H.; Schimmel, T. Self-organization of mesoscopic silver wires by electrochemical deposition. Beilstein journal of nanotechnology 2014, 5, 1285–1290. doi:10.3762/bjnano.5.142
  • Garcia, R.; Knoll, A. W.; Riedo, E. Advanced scanning probe lithography. Nature nanotechnology 2014, 9, 577–587. doi:10.1038/nnano.2014.157
  • Yan, J.; Aravamudhan, S. Nanoscience and Nanoengineering - Nano-Electro-Mechanical Systems: Processes and Devices. Nanoscience and Nanoengineering; CRC Press, 2014; pp 13–30. doi:10.1201/b16957-4
  • Geng, Y.; Zhao, X.; Yan, Y.; Hu, Z. An AFM-based methodology for measuring axial and radial error motions of spindles. Measurement Science and Technology 2014, 25, 055007. doi:10.1088/0957-0233/25/5/055007
  • Ladnorg, T.; Welle, A.; Heißler, S.; Wöll, C.; Gliemann, H. Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting. Beilstein journal of nanotechnology 2013, 4, 638–648. doi:10.3762/bjnano.4.71
Other Beilstein-Institut Open Science Activities