Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology

Maria Eugenia Toimil-Molares
Beilstein J. Nanotechnol. 2012, 3, 860–883. https://doi.org/10.3762/bjnano.3.97

Cite the Following Article

Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology
Maria Eugenia Toimil-Molares
Beilstein J. Nanotechnol. 2012, 3, 860–883. https://doi.org/10.3762/bjnano.3.97

How to Cite

Toimil-Molares, M. E. Beilstein J. Nanotechnol. 2012, 3, 860–883. doi:10.3762/bjnano.3.97

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Laucirica, G.; Toum-Terrones, Y.; Cayón, V. M.; Toimil-Molares, M. E.; Azzaroni, O.; Marmisollé, W. A. Advances in nanofluidic field-effect transistors: external voltage-controlled solid-state nanochannels for stimulus-responsive ion transport and beyond. Physical chemistry chemical physics : PCCP 2024. doi:10.1039/d3cp06142f
  • Laucirica, G.; Toum Terrones, Y.; Toimil-Molares, M. E.; Trautmann, C.; Marmisollé, W. A.; Azzaroni, O. Membrane nanoarchitectonics: advanced nanoporous membranes for osmotic power generation. Materials Nanoarchitectonics; Elsevier, 2024; pp 29–46. doi:10.1016/b978-0-323-99472-9.00021-3
  • Toum Terrones, Y.; Laucirica, G.; Cayón, V. M.; Cortez, M. L.; Toimil-Molares, M. E.; Trautmann, C.; Marmisollé, W. A.; Azzaroni, O. Ionic nanoarchitectonics for nanochannel-based biosensing devices. Materials Nanoarchitectonics; Elsevier, 2024; pp 429–452. doi:10.1016/b978-0-323-99472-9.00010-9
  • Deng, Y.; Zhao, Y.; Zhang, J.; Arai, T.; Huang, Q.; Liu, X. Fabrication of Magnetic Microrobots by Assembly. Advanced Intelligent Systems 2023, 6. doi:10.1002/aisy.202300471
  • Kozhina, E.; Panov, D.; Kovalets, N.; Apel, P.; Bedin, S. A thin-film polymer heating element with a continuous silver nanowires network embedded inside. Nanotechnology 2023, 35, 35601–035601. doi:10.1088/1361-6528/ad0247
  • Križan, A.; Zimny, K.; Guyonnet, A.; Idowu, E. O.; Duguet, E.; Plissonneau, M.; d'Alençon, L.; Le Mercier, T.; Tréguer-Delapierre, M. Bimetallic copper-based nanowires and the means to create next-generation stable transparent electrodes. Nano Express 2023, 4, 42001–042001. doi:10.1088/2632-959x/ad0168
  • Caddeo, F.; Himmelstein, F.; Mahmoudi, B.; Araújo-Cordero, A. M.; Eberhart, D.; Zhang, H.; Lindenberg, T.; Hähnel, A.; Hagendorf, C.; Maijenburg, A. W. Coating the surface of interconnected Cu2O nanowire arrays with HKUST-1 nanocrystals via electrochemical oxidation. Scientific reports 2023, 13, 13858. doi:10.1038/s41598-023-39982-x
  • Muench, F.; Schaefer, S.; Méndez, M.; Fernández-Roldán, J. A.; González-García, A. S.; Vega, V.; Kunz, U.; Ensinger, W.; García, J.; Prida, V. M. Magneto-structural properties of rhombohedral Ni and Ni–B nanotubes deposited by electroless-plating in track-etched mica templates. Journal of Materials Chemistry C 2023, 11, 9271–9280. doi:10.1039/d3tc00857f
  • Wagner, M. F. P.; Paulus, A. S.; Sigle, W.; Brötz, J.; Trautmann, C.; Voss, K.-O.; Völklein, F.; Toimil-Molares, M. E. Experimental evidence of a size-dependent sign change of the Seebeck coefficient of Bi nanowire arrays. Scientific reports 2023, 13, 8290. doi:10.1038/s41598-023-35065-z
  • Ulrich, N.; Schäfer, M.; Römer, M.; Straub, S. D.; Zhang, S.; Brötz, J.; Trautmann, C.; Scheu, C.; Etzold, B. J. M.; Toimil-Molares, M. E. Cu Nanowire Networks with Well-Defined Geometrical Parameters for Catalytic Electrochemical CO2 Reduction. ACS Applied Nano Materials 2023, 6, 4190–4200. doi:10.1021/acsanm.2c05232
  • Cheng, H.; Zhu, X.; Cheng, X.; Cai, P.; Liu, J.; Yao, H.; Zhang, L.; Duan, J. Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity. Nature communications 2023, 14, 1243. doi:10.1038/s41467-023-36965-4
  • Wagner, M. F. P.; Voss, K.-O.; Trautmann, C.; Toimil-Molares, M. E. Three-dimensional nanowire networks fabricated by ion track nanotechnology and their applications. EPJ Techniques and Instrumentation 2023, 10. doi:10.1140/epjti/s40485-023-00090-9
  • Laucirica, G.; Toum Terrones, Y.; Wagner, M. F. P.; Cayón, V. M.; Cortez, M. L.; Toimil-Molares, M. E.; Trautmann, C.; Marmisollé, W.; Azzaroni, O. Electrochemically addressed FET-like nanofluidic channels with dynamic ion-transport regimes. Nanoscale 2023, 15, 1782–1793. doi:10.1039/d2nr04510a
  • Gupta, R.; Chauhan, V.; Gupta, D.; Goel, S.; Kumar, R. Scaffold assisted synthesized metallic and semiconductor nanowires for electrochemical biosensing applications. Multifaceted Bio-sensing Technology; Elsevier, 2023; pp 217–238. doi:10.1016/b978-0-323-90807-8.00012-9
  • Ramesh, G.; Reddy, N. M.; Saritha, D. Fluoropolymer nanocomposites for water desalination applications. Advanced Fluoropolymer Nanocomposites; Elsevier, 2023; pp 529–559. doi:10.1016/b978-0-323-95335-1.00004-9
  • Laucirica, G.; Allegretto, J. A.; Wagner, M. F.; Toimil-Molares, M. E.; Trautmann, C.; Rafti, M.; Marmisollé, W.; Azzaroni, O. Switchable Ion Current Saturation Regimes Enabled via Heterostructured Nanofluidic Devices Based on Metal-Organic Frameworks. Advanced materials (Deerfield Beach, Fla.) 2022, 34, e2207339. doi:10.1002/adma.202207339
  • Liu, D.; Guo, R.; Wang, B.; Hu, J.; Lu, Y. Magnetic Micro/Nanorobots: A New Age in Biomedicines. Advanced Intelligent Systems 2022, 4. doi:10.1002/aisy.202200208
  • Ruiz-Gómez, S.; Fernández-González, C.; Perez, L. Electrodeposition as a Tool for Nanostructuring Magnetic Materials. Micromachines 2022, 13, 1223. doi:10.3390/mi13081223
  • Huang, K.; Zhang, J.; Wang, W.; Zhao, C.; Huang, R.; Zhen, L.; Luo, H.; Liu, J.; Zhang, Y.; Duan, J. Elliptical gold nanowires: controlled fabrication and plasmonic Fabry-Pérot resonances. Optics letters 2022, 47, 3616. doi:10.1364/ol.464600
  • Ruiz‐Clavijo, A.; Caballero‐Calero, O.; Navas, D.; Ordoñez‐Cencerrado, A. A.; Blanco‐Portals, J.; Peiró, F.; Sanz, R.; Martín‐González, M. Unveiling the Complex Magnetization Reversal Process in 3D Nickel Nanowire Networks. Advanced Electronic Materials 2022, 8. doi:10.1002/aelm.202200342

Patents

  • TOIMIL MOLARES MARIA EUGENIA; TRAUTMAN CHRISTINA; LEE PUI LAP JACOB; MORCRETTE MATHIEU. POROUS ETCHED ION-TRACK POLYMER MEMBRANE AS A SEPARATOR FOR A BATTERY. WO 2018229235 A1, Dec 20, 2018.
  • TOIMIL MOLARES MARIA EUGENIA; TRAUTMAN CHRISTINA; LEE PUI LAP JACOB; MORCRETTE MATHIEU. POROUS ETCHED ION-TRACK POLYMER MEMBRANE AS A SEPARATOR FOR A BATTERY. EP 3416211 A1, Dec 19, 2018.
  • ZHOU PEIHENG; CHEN QI; ZHEN GUOSHUAI; CHEN WANLI; XIE JIANLIANG; DENG LONGJIANG; LU HAIPENG. Broadband infrared wave absorbing structure material and preparation method thereof. CN 106896433 A, June 27, 2017.
  • KOTZIAS BERNHARD; SCHLIWA RALF; VAN TOOR JAN. ENERGY GENERATING DEVICE AND ENERGY GENERATING METHOD AND ALSO CONTROL ARRANGEMENT AND REACTOR VESSEL THEREFOR. WO 2015040077 A1, March 26, 2015.
  • KOTZIAS BERNHARD; SCHLIWA RALF; TOOR JAN VAN. Vorrichtung und Verfahren zur Energieerzeugung. DE 102013110249 A1, March 19, 2015.
Other Beilstein-Institut Open Science Activities