Preparation of NiS/ZnIn2S4 as a superior photocatalyst for hydrogen evolution under visible light irradiation

Liang Wei, Yongjuan Chen, Jialin Zhao and Zhaohui Li
Beilstein J. Nanotechnol. 2013, 4, 949–955. https://doi.org/10.3762/bjnano.4.107

Cite the Following Article

Preparation of NiS/ZnIn2S4 as a superior photocatalyst for hydrogen evolution under visible light irradiation
Liang Wei, Yongjuan Chen, Jialin Zhao and Zhaohui Li
Beilstein J. Nanotechnol. 2013, 4, 949–955. https://doi.org/10.3762/bjnano.4.107

How to Cite

Wei, L.; Chen, Y.; Zhao, J.; Li, Z. Beilstein J. Nanotechnol. 2013, 4, 949–955. doi:10.3762/bjnano.4.107

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhong, Z.; Chen, W.; Chen, X.; Li, J.; Yang, H.; Zhang, L.; Yang, P. Nano-spherical Fe3O4 modified NixSy@SiMPs composite materials improve photoelectrochemical performance. Journal of Materials Science: Materials in Electronics 2024, 35. doi:10.1007/s10854-024-12020-w
  • Dong, F.; Liu, H.; Qin, L.; Zhang, T.; Li, X.; Kang, S.-Z. Boosting the photocatalytic activity of ZnIn2S4-based photocatalyst for H2 evolution using porous ZnWO4 nanoflakelets as a cocatalyst. New Journal of Chemistry 2023, 47, 13177–13185. doi:10.1039/d3nj02182c
  • Zhang, H.; Gu, H.; Wang, X.; Chang, S.; Li, Q.; Dai, W.-L. Fabrication of noble-metal-free hierarchical rectangular tubular S-scheme NiS/ZnIn2S4/AgIn(WO4)2 nanocomposite for highly efficient photocatalytic hydrogen evolution. Chemical Engineering Journal 2023, 457, 141185. doi:10.1016/j.cej.2022.141185
  • Ren, Y.; Foo, J. J.; Zeng, D.; Ong, W. ZnIn2S4‐Based Nanostructures in Artificial Photosynthesis: Insights into Photocatalytic Reduction toward Sustainable Energy Production. Small Structures 2022, 3. doi:10.1002/sstr.202200017
  • Zhao, H.; Jian, L.; Gong, M.; Jing, M.; Li, H.; Mao, Q.; Lu, T.; Guo, Y.; Ji, R.; Chi, W.; Dong, Y.; Zhu, Y. Transition‐Metal‐Based Cocatalysts for Photocatalytic Water Splitting. Small Structures 2022, 3. doi:10.1002/sstr.202100229
  • Xiong, X.; Yan, A.; Zhang, X.; Huang, F.; Li, Z.; Zhang, Z.; Weng, H. ReS2/ZnIn2S4 heterojunctions with enhanced visible-light-driven hydrogen evolution performance for water splitting. Journal of Alloys and Compounds 2021, 873, 159850. doi:10.1016/j.jallcom.2021.159850
  • Wang, J.; Sun, S.; Zhou, R.; Li, Y.; He, Z.; Ding, H.; Chen, D.; Ao, W. A review: Synthesis, modification and photocatalytic applications of ZnIn2S4. Journal of Materials Science & Technology 2021, 78, 1–19. doi:10.1016/j.jmst.2020.09.045
  • Wang, X.; Li, Y.; Li, Z. Efficient visible light initiated hydrothiolations of alkenes/alkynes over Ir2S3/ZnIn2S4: Role of Ir2S3. Chinese Journal of Catalysis 2021, 42, 409–416. doi:10.1016/s1872-2067(20)63660-9
  • Lucena, R.; Conesa, J. C. V-Substituted ZnIn2S4: A (Visible+NIR) Light-Active Photocatalyst. Photochem 2021, 1, 1–9. doi:10.3390/photochem1010001
  • Xia, D.; Chen, Q.; Li, Z.; Luo, M.; Wong, P. K. Band gap engineered chalcogenide nanomaterials for visible light-induced photocatalysis. Chalcogenide-Based Nanomaterials as Photocatalysts; Elsevier, 2021; pp 135–172. doi:10.1016/b978-0-12-820498-6.00006-8
  • Swain, G.; Parida, K. Designing of a novel p-MoS2@n-ZnIn2S4 heterojunction based semiconducting photocatalyst towards photocatalytic HER. Materials Today: Proceedings 2021, 35, 268–274. doi:10.1016/j.matpr.2020.05.756
  • Han, G.; Liu, X.-W.; Cao, Z.; Sun, Y. Photocatalytic Pinacol C–C Coupling and Jet Fuel Precursor Production on ZnIn2S4 Nanosheets. ACS Catalysis 2020, 10, 9346–9355. doi:10.1021/acscatal.0c01715
  • Ran, Q.; Yu, Z.; Jiang, R.; Qian, L.; Hou, Y.; Yang, F.; Li, F.; Li, M.; Sun, Q.; Zhang, H. Path of electron transfer created in S-doped NH2-UiO-66 bridged ZnIn2S4/MoS2 nanosheet heterostructure for boosting photocatalytic hydrogen evolution. Catalysis Science & Technology 2020, 10, 2531–2539. doi:10.1039/d0cy00127a
  • Li, J.; Jiménez-Calvo, P.; Paineau, E.; Ghazzal, M. N. Metal Chalcogenides Based Heterojunctions and Novel Nanostructures for Photocatalytic Hydrogen Evolution. Catalysts 2020, 10, 89. doi:10.3390/catal10010089
  • Hao, M.; Deng, X.; Xu, L.; Li, Z. Noble metal Free MoS2/ZnIn2S4 nanocomposite for acceptorless photocatalytic semi-dehydrogenation of 1,2,3,4-tetrahydroisoquinoline to produce 3,4-dihydroisoquinoline. Applied Catalysis B: Environmental 2019, 252, 18–23. doi:10.1016/j.apcatb.2019.04.002
  • Chandrasekaran, S.; Yao, L.; Deng, L.; Bowen, C. R.; Zhang, Y.; Chen, S.; Lin, Z.; Peng, F.; Zhang, P. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society reviews 2019, 48, 4178–4280. doi:10.1039/c8cs00664d
  • Swain, G.; Sultana, S.; Parida, K. One-Pot-Architectured Au-Nanodot-Promoted MoS2/ZnIn2S4: A Novel p–n Heterojunction Photocatalyst for Enhanced Hydrogen Production and Phenol Degradation. Inorganic chemistry 2019, 58, 9941–9955. doi:10.1021/acs.inorgchem.9b01105
  • Li, H.; Chen, Z.-H.; Zhao, L.; Yang, G. Synthesis of TiO 2 @ZnIn 2 S 4 hollow nanospheres with enhanced photocatalytic hydrogen evolution. Rare Metals 2019, 38, 420–427. doi:10.1007/s12598-019-01253-y
  • Wang, B.; Ding, Y.; Deng, Z.; Li, Z. Rational design of ternary NiS/CQDs/ZnIn2S4 nanocomposites as efficient noble-metal-free photocatalyst for hydrogen evolution under visible light. Chinese Journal of Catalysis 2019, 40, 335–342. doi:10.1016/s1872-2067(18)63159-6
  • Wang, P.; Xu, S.; Chen, F.; Yu, H. Ni nanoparticles as electron-transfer mediators and NiSx as interfacial active sites for coordinative enhancement of H2-evolution performance of TiO2. Chinese Journal of Catalysis 2019, 40, 343–351. doi:10.1016/s1872-2067(18)63157-2
Other Beilstein-Institut Open Science Activities