Bimodal atomic force microscopy driving the higher eigenmode in frequency-modulation mode: Implementation, advantages, disadvantages and comparison to the open-loop case

Daniel Ebeling and Santiago D. Solares
Beilstein J. Nanotechnol. 2013, 4, 198–207. https://doi.org/10.3762/bjnano.4.20

Cite the Following Article

Bimodal atomic force microscopy driving the higher eigenmode in frequency-modulation mode: Implementation, advantages, disadvantages and comparison to the open-loop case
Daniel Ebeling and Santiago D. Solares
Beilstein J. Nanotechnol. 2013, 4, 198–207. https://doi.org/10.3762/bjnano.4.20

How to Cite

Ebeling, D.; Solares, S. D. Beilstein J. Nanotechnol. 2013, 4, 198–207. doi:10.3762/bjnano.4.20

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Impundu, J.; Hussain, S.; Minani, E.; Liu, H.; Li, Y. J.; Sun, L. Local magnetic characterization of 1D and 2D carbon nanomaterials with magnetic force microscopy techniques: A review. Materials Today Communications 2023, 35, 106103. doi:10.1016/j.mtcomm.2023.106103
  • Romero-Fierro, D.; Bustamante-Torres, M.; Bravo-Plascencia, F.; Esquivel-Lozano, A.; Ruiz, J.-C.; Bucio, E. Recent Trends in Magnetic Polymer Nanocomposites for Aerospace Applications: A Review. Polymers 2022, 14, 4084. doi:10.3390/polym14194084
  • Marini, M.; Legittimo, F.; Torre, B.; Allione, M.; Limongi, T.; Scaltrito, L.; Pirri, C.; Di Fabrizio, E. DNA Studies: Latest Spectroscopic and Structural Approaches. Micromachines 2021, 12, 1094. doi:10.3390/mi12091094
  • Eslami, B.; Caputo, D. Effect of Eigenmode Frequency on Loss Tangent Atomic Force Microscopy Measurements. Applied Sciences 2021, 11, 6813. doi:10.3390/app11156813
  • Kouchaksaraei, M. G.; Bahrami, A. High-resolution compositional mapping of surfaces in non-contact atomic force microscopy by a new multi-frequency excitation. Ultramicroscopy 2021, 227, 113317. doi:10.1016/j.ultramic.2021.113317
  • Yang, P.; Bi, Z.; Shang, Y.; Chen, K.; Liang, Y.; Li, X.; Shang, G. Bimodal AFM-Based Nanocharacterization of Cycling-Induced Topographic and Mechanical Evolutions of LiMn 2 O 4 Cathode Films. Langmuir : the ACS journal of surfaces and colloids 2021, 37, 6406–6413. doi:10.1021/acs.langmuir.1c00325
  • Silbernagl, D.; Khorasani, M. G. Z.; Murillo, N. C.; Elert, A. M.; Sturm, H. Bulk chemical composition contrast from attractive forces in AFM force spectroscopy. Beilstein journal of nanotechnology 2021, 12, 58–71. doi:10.3762/bjnano.12.5
  • Zhong, Q.; Li, X.; Zhang, H.; Chi, L. Noncontact atomic force microscopy: Bond imaging and beyond. Surface Science Reports 2020, 75, 100509. doi:10.1016/j.surfrep.2020.100509
  • Martin-Jimenez, D.; Ihle, A.; Ahles, S.; Wegner, H. A.; Schirmeisen, A.; Ebeling, D. Bond-level imaging of organic molecules using Q-controlled amplitude modulation atomic force microscopy. Applied Physics Letters 2020, 117, 131601. doi:10.1063/5.0018246
  • Brar, H. S.; Balantekin, M. Manipulating the frequency response of small high-frequency atomic force microscope cantilevers. Measurement Science and Technology 2020, 31, 095901. doi:10.1088/1361-6501/ab8903
  • Benaglia, S.; Amo, C. A.; Garcia, R. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM. Nanoscale 2019, 11, 15289–15297. doi:10.1039/c9nr04396a
  • Lee, B. J.; Lee, J. Beyond mass measurement for single microparticles via bimodal operation of microchannel resonators. Micro and Nano Systems Letters 2019, 7, 9. doi:10.1186/s40486-019-0088-3
  • Martin-Jimenez, D.; Ahles, S.; Mollenhauer, D.; Wegner, H. A.; Schirmeisen, A.; Ebeling, D. Bond-Level Imaging of the 3D Conformation of Adsorbed Organic Molecules Using Atomic Force Microscopy with Simultaneous Tunneling Feedback. Physical review letters 2019, 122, 196101. doi:10.1103/physrevlett.122.196101
  • Sun, Y.; Vu, L. H.; Chew, N.; Puthucheary, Z.; Cove, M. E.; Zeng, K. A Study of Perturbations in Structure and Elastic Modulus of Bone Microconstituents Using Bimodal Amplitude Modulated-Frequency Modulated Atomic Force Microscopy. ACS biomaterials science & engineering 2018, 5, 478–486. doi:10.1021/acsbiomaterials.8b01087
  • Athanasopoulou, E.-N.; Nianias, N.; Ong, Q. K.; Stellacci, F. Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers. Nanoscale 2018, 10, 23027–23036. doi:10.1039/c8nr07657j
  • Liu, Y.; Sun, Q.; Lu, W.; Wang, H.; Sun, Y.; Wang, Z.; Lu, X.; Zeng, K. General Resolution Enhancement Method in Atomic Force Microscopy Using Deep Learning. Advanced Theory and Simulations 2018, 2, 1800137. doi:10.1002/adts.201800137
  • Xinfeng, T.; Shi, S.; Guo, D.; Luo, J. Dynamical characterization of micro cantilevers by different excitation methods in dynamic atomic force microscopy. The Review of scientific instruments 2018, 89, 115109. doi:10.1063/1.5050055
  • Li, T.; Zeng, K. Probing of Local Multifield Coupling Phenomena of Advanced Materials by Scanning Probe Microscopy Techniques. Advanced materials (Deerfield Beach, Fla.) 2018, 30, 1803064. doi:10.1002/adma.201803064
  • Grattarola, L.; Derchi, G.; Diaspro, A.; Gambaro, C.; Salerno, M. Local viscoelastic response of direct and indirect dental restorative composites measured by AFM. Dental materials journal 2017, 37, 365–373. doi:10.4012/dmj.2017-048
  • Wu, J.; Yang, S.; Cai, W.; Bi, Z.; Shang, G.; Yao, J. Multi-characterization of LiCoO 2 cathode films using advanced AFM-based techniques with high resolution. Scientific reports 2017, 7, 11164. doi:10.1038/s41598-017-11623-0
Other Beilstein-Institut Open Science Activities