Selective surface modification of lithographic silicon oxide nanostructures by organofunctional silanes

Thomas Baumgärtel, Christian von Borczyskowski and Harald Graaf
Beilstein J. Nanotechnol. 2013, 4, 218–226. https://doi.org/10.3762/bjnano.4.22

Cite the Following Article

Selective surface modification of lithographic silicon oxide nanostructures by organofunctional silanes
Thomas Baumgärtel, Christian von Borczyskowski and Harald Graaf
Beilstein J. Nanotechnol. 2013, 4, 218–226. https://doi.org/10.3762/bjnano.4.22

How to Cite

Baumgärtel, T.; von Borczyskowski, C.; Graaf, H. Beilstein J. Nanotechnol. 2013, 4, 218–226. doi:10.3762/bjnano.4.22

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Herold, S.; Acker, J. Strain enhanced chemical oxidation of silicon wafer. Materials Science in Semiconductor Processing 2021, 135, 106105. doi:10.1016/j.mssp.2021.106105
  • Zhang, W.; Lai, E. P. C. Chemical Functionalities of 3-aminopropyltriethoxy-silane for Surface Modification of Metal Oxide Nanoparticles. Silicon 2021, 14, 6535–6545. doi:10.1007/s12633-021-01477-7
  • Zhang, W.; Lai, E. P. C. Chemical Functionalities of 3-aminopropyltriethoxy-silane for Surface Modification of Metal Oxide Nanoparticles. Silicon 2021, 1–11.
  • Bekmurzayeva, A.; Ashikbayeva, Z.; Myrkhiyeva, Z.; Nugmanova, A.; Shaimerdenova, M.; Ayupova, T.; Tosi, D. Label-free fiber-optic spherical tip biosensor to enable picomolar-level detection of CD44 protein. Scientific reports 2021, 11, 19583. doi:10.1038/s41598-021-99099-x
  • Kokot, B.; Kokot, H.; Umek, P.; van Midden, K. P.; Pajk, S.; Garvas, M.; Eggeling, C.; Koklic, T.; Urbančič, I.; Štrancar, J. How to control fluorescent labeling of metal oxide nanoparticles for artefact-free live cell microscopy. Nanotoxicology 2021, 15, 1102–1123. doi:10.1080/17435390.2021.1973607
  • Oggianu, M.; Figus, C.; Ashoka-Sahadevan, S.; Monni, N.; Marongiu, D.; Saba, M.; Mura, A.; Bongiovanni, G.; Caltagirone, C.; Lippolis, V.; Cannas, C.; Cadoni, E.; Mercuri, M. L.; Quochi, F. Silicon-based fluorescent platforms for copper( ii ) detection in water. RSC advances 2021, 11, 15557–15564. doi:10.1039/d1ra02695j
  • Kokot, B.; Kokot, H.; Umek, P.; Midden, K. P.; Pajk, S.; Garvas, M.; Eggeling, C.; Koklic, T.; Urbančič, I.; Štrancar, J. Controlled Fluorescent Labelling of Metal Oxide Nanoparticles for Artefact-free Live Cell Microscopy. Cold Spring Harbor Laboratory 2021. doi:10.1101/2021.04.19.440400
  • Gherca, D.; Tsikritzis, D.; Androulidaki, M.; Tsagaraki, K.; Kennou, S.; Pelekanos, N.; Vamvakaki, M. Versatile nanografting pathway to functionally embellished fluorogenic small-molecule on two-dimensional inorganic surfaces. Surfaces and Interfaces 2021, 23, 100949. doi:10.1016/j.surfin.2021.100949
  • Woo, S.; Park, H. R.; Park, J.; Yi, J.; Hwang, W. Robust and continuous oil/water separation with superhydrophobic glass microfiber membrane by vertical polymerization under harsh conditions. Scientific reports 2020, 10, 21413. doi:10.1038/s41598-020-78271-9
  • Bekmurzayeva, A.; Dukenbayev, K.; Azevedo, H. S.; Marsili, E.; Tosi, D.; Kanayeva, D. Optimizing Silanization to Functionalize Stainless Steel Wire: Towards Breast Cancer Stem Cell Isolation. Materials (Basel, Switzerland) 2020, 13, 3693. doi:10.3390/ma13173693
  • Godfroy, M.; Khalil, M.; Niebel, C.; Jarrosson, T.; Foix, D.; Flaud, V.; Serein-Spirau, F.; Viennois, R.; Granier, M.; Beaudhuin, M. Transition metal silicide surface grafting by multiple functional groups and green optimization by mechanochemistry. Physical chemistry chemical physics : PCCP 2019, 21, 25720–25727. doi:10.1039/c9cp03864g
  • Decarpigny, C.; Bleta, R.; Ponchel, A.; Monflier, E. Confinement of Candida Antarctica Lipase B in a Multifunctional Cyclodextrin-Derived Silicified Hydrogel and Its Application as Enzymatic Nanoreactor. ACS applied bio materials 2019, 2, 5568–5581. doi:10.1021/acsabm.9b00646
  • Knotek, P.; Plecháček, T.; Smolík, J.; Kutálek, P.; Dvořák, F.; Vlček, M.; Navrátil, J.; Drasar, C. Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere. Beilstein journal of nanotechnology 2019, 10, 1401–1411. doi:10.3762/bjnano.10.138
  • Menges, J.; Clasen, A.; Jourdain, M.; Beckmann, J.; Hoffmann, C.; König, J.; Jung, G. Surface Preparation for Single-Molecule Chemistry. Langmuir : the ACS journal of surfaces and colloids 2019, 35, 2506–2516. doi:10.1021/acs.langmuir.8b03603
  • Weng, J.; Zhao, S.; Li, Z.; Ricardo, K. B.; Zhou, F.; Kim, H.; Liu, H. Raman Enhancement and Photo-Bleaching of Organic Dyes in the Presence of Chemical Vapor Deposition-Grown Graphene. Nanomaterials (Basel, Switzerland) 2017, 7, 337. doi:10.3390/nano7100337
  • Le, N.; Coffer, J. Porous silicon nanotube arrays. Silicon Nanomaterials Sourcebook; CRC Press, 2017; pp 599–614. doi:10.1201/9781315153544-31
  • Le, N. T.; Coffer, J. L. Porous silicon nanotube arrays. Silicon Nanomaterials Sourcebook; CRC Press, 2017; pp 599–614. doi:10.4324/9781315153544-30
  • Wang, J.; Yang, S.; Li, C.; Yungen, M.; Zhu, L.; Mao, C.; Yang, M. Nucleation and Assembly of Silica into Protein-Based Nanocomposites as Effective Anticancer Drug Carriers Using Self-Assembled Silk Protein Nanostructures as Biotemplates. ACS applied materials & interfaces 2017, 9, 22259–22267. doi:10.1021/acsami.7b05664
  • Graaf, H.; Baumgärtel, T. Self-Assembled Organic-Inorganic Nanostructures: Optics and Dynamics - Nanolithography and Decoration of Generated Nanostructures by Dye Molecules. Self-Assembled Organic-Inorganic Nanostructures; CRC Press, 2016; pp 295–352. doi:10.1201/9781315364544-7
  • Giraud, L.; Nadarajah, R.; Matar, Y.; Bazin, G.; Sun, J.; Zhu, X. X.; Giasson, S. Amino-functionalized monolayers covalently grafted to silica-based substrates as a robust primer anchorage in aqueous media. Applied Surface Science 2016, 370, 476–485. doi:10.1016/j.apsusc.2016.02.141
Other Beilstein-Institut Open Science Activities