Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates

Gabriele Fisichella, Salvatore Di Franco, Patrick Fiorenza, Raffaella Lo Nigro, Fabrizio Roccaforte, Cristina Tudisco, Guido G. Condorelli, Nicolò Piluso, Noemi Spartà, Stella Lo Verso, Corrado Accardi, Cristina Tringali, Sebastiano Ravesi and Filippo Giannazzo
Beilstein J. Nanotechnol. 2013, 4, 234–242. https://doi.org/10.3762/bjnano.4.24

Cite the Following Article

Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates
Gabriele Fisichella, Salvatore Di Franco, Patrick Fiorenza, Raffaella Lo Nigro, Fabrizio Roccaforte, Cristina Tudisco, Guido G. Condorelli, Nicolò Piluso, Noemi Spartà, Stella Lo Verso, Corrado Accardi, Cristina Tringali, Sebastiano Ravesi and Filippo Giannazzo
Beilstein J. Nanotechnol. 2013, 4, 234–242. https://doi.org/10.3762/bjnano.4.24

How to Cite

Fisichella, G.; Di Franco, S.; Fiorenza, P.; Lo Nigro, R.; Roccaforte, F.; Tudisco, C.; Condorelli, G. G.; Piluso, N.; Spartà, N.; Lo Verso, S.; Accardi, C.; Tringali, C.; Ravesi, S.; Giannazzo, F. Beilstein J. Nanotechnol. 2013, 4, 234–242. doi:10.3762/bjnano.4.24

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Hatahet, M. H.; Bryja, H.; Lotnyk, A.; Wagner, M.; Abel, B. Ultra-Low Loading of Iron Oxide and Platinum on CVD-Graphene Composites as Effective Electrode Catalysts for Solid Acid Fuel Cells. Catalysts 2023, 13, 1154. doi:10.3390/catal13081154
  • Di Giorgio, C.; Blundo, E.; Pettinari, G.; Felici, M.; Bobba, F.; Polimeni, A. Mechanical, Elastic, and Adhesive Properties of Two‐Dimensional Materials: From Straining Techniques to State‐of‐the‐Art Local Probe Measurements. Advanced Materials Interfaces 2022, 9. doi:10.1002/admi.202102220
  • Park, J. M.; Hyeon, D. Y.; Ma, H.-S.; Kim, S.; Kim, S.-T.; Nguyen, Y. N.; Son, I.; Yi, S.; Kim, K. T.; Park, K.-I. Enhanced output power of thermoelectric modules with reduced contact resistance by adopting the optimized Ni diffusion barrier layer. Journal of Alloys and Compounds 2021, 884, 161119. doi:10.1016/j.jallcom.2021.161119
  • Giannazzo, F.; Schilirò, E.; Nigro, R. L.; Prystawko, P.; Cordier, Y. Nitride Semiconductor Technology; Wiley, 2020; pp 397–438. doi:10.1002/9783527825264.ch11
  • Kaplan, D.; Fullon, R.; Simonson, N. A. Characterization of two-dimensional materials. Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures; Elsevier, 2020; pp 289–322. doi:10.1016/b978-0-12-818475-2.00014-3
  • Giannazzo, F.; Greco, G.; Schilirò, E.; Nigro, R. L.; Deretzis, I.; La Magna, A.; Roccaforte, F.; Iucolano, F.; Ravesi, S.; Frayssinet, E.; Michon, A.; Cordier, Y. High-Performance Graphene/AlGaN/GaN Schottky Junctions for Hot Electron Transistors. ACS Applied Electronic Materials 2019, 1, 2342–2354. doi:10.1021/acsaelm.9b00530
  • Vigneswari, S.; Murugesan, S. Synthesis and characterisation of VG nanosheets on silica aerogel by plasma-enhanced chemical vapour deposition method. Micro & Nano Letters 2019, 14, 595–599. doi:10.1049/mnl.2018.5436
  • Yoo, S.; Jeong, S. Y.; Lee, J.; Park, J. H.; Kim, D. W.; Jeong, H. J.; Han, J. T.; Lee, G.-W.; Jeong, S. Y. Heavily nitrogen doped chemically exfoliated graphene by flash heating. Carbon 2019, 144, 675–683. doi:10.1016/j.carbon.2018.12.090
  • Wu, Y.; Zhu, X.; Zhao, W.; Wang, Y.; Wang, C.; Xue, Q. Corrosion mechanism of graphene coating with different defect levels. Journal of Alloys and Compounds 2019, 777, 135–144. doi:10.1016/j.jallcom.2018.10.260
  • Bourgeois, B. B.; Luo, S.; Riggs, B. C.; Ji, Y.; Adireddy, S.; Schroder, K. A.; Farnsworth, S.; Chrisey, D. B.; Escarra, M. D. Pulsed photoinitiated fabrication of inkjet printed titanium dioxide/reduced graphene oxide nanocomposite thin films. Nanotechnology 2018, 29, 315401. doi:10.1088/1361-6528/aac306
  • Wirth-Lima, A. J.; Silva, M. G.; Sombra, A. S. B. Comparisons of electrical and optical properties between graphene and silicene — A review*. Chinese Physics B 2018, 27, 023201. doi:10.1088/1674-1056/27/2/023201
  • Giannazzo, F.; Fisichella, G.; Greco, G.; Schilirò, E.; Deretzis, I.; Nigro, R. L.; La Magna, A.; Roccaforte, F.; Iucolano, F.; Verso, S. L.; Ravesi, S.; Prystawko, P.; Kruszewski, P.; Leszczynski, M.; Dagher, R.; Frayssinet, E.; Michon, A.; Cordier, Y. Fabrication and Characterization of Graphene Heterostructures with Nitride Semiconductors for High Frequency Vertical Transistors. physica status solidi (a) 2017, 215, 1700653. doi:10.1002/pssa.201700653
  • Azpeitia, J.; Otero-Irurueta, G.; Palacio, I.; Martínez, J. I.; del Árbol, N. R.; Santoro, G.; Gutiérrez, A.; Aballe, L.; Foerster, M.; Kalbac, M.; Vales, V.; Mompean, F.; García-Hernández, M.; Martín-Gago, J. A.; Munuera, C.; López, M. F. High-quality PVD graphene growth by fullerene decomposition on Cu foils. Carbon 2017, 119, 535–543. doi:10.1016/j.carbon.2017.04.067
  • Musumeci, C. Advanced Scanning Probe Microscopy of Graphene and Other 2D Materials. Crystals 2017, 7, 216. doi:10.3390/cryst7070216
  • Weiss, M.; Walkowiak, M.; Wasiński, K.; Półrolniczak, P.; Kokocińska, B.; Strupiński, W. Comparative Morphological Analysis of Graphene on Copper Substrate obtained by CVD from a Liquid Precursor. Acta Physica Polonica A 2017, 131, 1497–1506. doi:10.12693/aphyspola.131.1497
  • Song, X.; Wei, D.; Sun, T.; Leyong, Y.; Yang, J.; Yongna, Z.; Fang, L.; Wei, D.; Shi, H.; Du, C. A stably enhanced transparent conductive graphene film obtained using an air-annealing method. Materials Research Express 2016, 3, 085003. doi:10.1088/2053-1591/3/8/085003
  • Joucken, F.; Reckinger, N.; Lorcy, S.; Avila, J.; Chen, C.; Lagoute, J.; Colomer, J.-F.; Ghijsen, J.; Asensio, M. C.; Sporken, R. Evidencing the need for high spatial resolution in angle-resolved photoemission experiments. Physical Review B 2016, 93, 241101. doi:10.1103/physrevb.93.241101
  • Campo, T.; Cotto, M.; Márquez, F.; Elizalde, E.; Morant, C. Graphene Synthesis by Plasma-Enhanced CVD Growth with Ethanol. American Journal of Engineering and Applied Sciences 2016, 9, 574–583. doi:10.3844/ajeassp.2016.574.583
  • Kim, N. D.; Li, Y.; Wang, G.; Fan, X.; Jiang, J.; Li, L.; Ji, Y.; Ruan, G.; Hauge, R. H.; Tour, J. M. Growth and Transfer of Seamless 3D Graphene–Nanotube Hybrids. Nano letters 2016, 16, 1287–1292. doi:10.1021/acs.nanolett.5b04627
  • Comanescu, C. F.; Istrate, A.-I.; Veca, L. M.; Nastase, F.; Gavrila, R.; Purica, M. Micro-Raman spectroscopy of graphene transferred by wet chemical methods. In 2015 International Semiconductor Conference (CAS), IEEE, 2015; pp 63–66. doi:10.1109/smicnd.2015.7355161
Other Beilstein-Institut Open Science Activities