Guided immobilisation of single gold nanoparticles by chemical electron beam lithography

Patrick A. Schaal and Ulrich Simon
Beilstein J. Nanotechnol. 2013, 4, 336–344. https://doi.org/10.3762/bjnano.4.39

Supporting Information

Figures S1, S2 and S6 present CAD-drawings of the patterns used within the CEBL process. Figure S3 discusses theoretical calculations of primary electron pathways within the used substrates. SEM pictures of 100 nm structures incubated with 16 nm AuNPs are shown in Figures S4 and S5. Figure S7 presents preliminary results of AuNP pattern formation on ITO-covered PET foils by this approach.

Supporting Information File 1: Additional CAD-drawings, theoretical calculations and SEM pictures
Format: PDF Size: 594.5 KB Download

Cite the Following Article

Guided immobilisation of single gold nanoparticles by chemical electron beam lithography
Patrick A. Schaal and Ulrich Simon
Beilstein J. Nanotechnol. 2013, 4, 336–344. https://doi.org/10.3762/bjnano.4.39

How to Cite

Schaal, P. A.; Simon, U. Beilstein J. Nanotechnol. 2013, 4, 336–344. doi:10.3762/bjnano.4.39

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Oliveira de Miranda, L.; Maillot, B.; Bosmi, M.; Galmiche, L.; Audibert, J.-F.; Decorse, P.; Brasiliense, V.; Berthelier, L.; Bonnamour, I.; Darbost, U.; Miomandre, F. Photophysical and Electrochemical Study of New Luminescent and Redox-Active Tetrazine Derivatives Grafted on Gold Nanoparticles. The Journal of Physical Chemistry C 2023, 127, 3660–3670. doi:10.1021/acs.jpcc.2c07004
  • Hils, C.; Dulle, M.; Sitaru, G.; Gekle, S.; Schöbel, J.; Frank, A. O.; Drechsler, M.; Greiner, A.; Schmalz, H. Influence of patch size and chemistry on the catalytic activity of patchy hybrid nonwovens. Nanoscale advances 2020, 2, 438–452. doi:10.1039/c9na00607a
  • Raab, N.; Schmidt, D. O.; Du, H.; Kruth, M.; Simon, U.; Dittmann, R. Au Nanoparticles as Template for Defect Formation in Memristive SrTiO3 Thin Films. Nanomaterials (Basel, Switzerland) 2018, 8, 869. doi:10.3390/nano8110869
  • Kosinova, A.; Wang, D.; Baradács, E.; Parditka, B.; Kups, T.; Klinger, L.; Erdélyi, Z.; Schaaf, P.; Rabkin, E. Tuning the nanoscale morphology and optical properties of porous gold nanoparticles by surface passivation and annealing. Acta Materialia 2017, 127, 108–116. doi:10.1016/j.actamat.2017.01.014
  • Schöbel, J.; Burgard, M.; Hils, C.; Dersch, R.; Dulle, M.; Volk, K.; Karg, M.; Greiner, A.; Schmalz, H. Bottom-Up Meets Top-Down: Patchy Hybrid Nonwovens as an Efficient Catalysis Platform. Angewandte Chemie (International ed. in English) 2016, 56, 405–408. doi:10.1002/anie.201609819
  • Schöbel, J.; Burgard, M.; Hils, C.; Dersch, R.; Dulle, M.; Volk, K.; Karg, M.; Greiner, A.; Schmalz, H. Bottom‐up trifft auf Top‐down: Patch‐artig strukturierte Hybridfasermatten als effiziente Katalyseplattform. Angewandte Chemie 2016, 129, 416–419. doi:10.1002/ange.201609819
  • Huang, C.; Förste, A.; Walheim, S.; Schimmel, T. Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch2. Beilstein journal of nanotechnology 2015, 6, 1205–1211. doi:10.3762/bjnano.6.123
  • Trasobares, J.; Vaurette, F.; François, M.; Romijn, H.; Codron, J.-L.; Vuillaume, D.; Theron, D.; Clément, N. High speed e-beam lithography for gold nanoarray fabrication and use in nanotechnology. Beilstein journal of nanotechnology 2014, 5, 1918–1925. doi:10.3762/bjnano.5.202
Other Beilstein-Institut Open Science Activities