Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes

Daniel Kiracofe, Arvind Raman and Dalia Yablon
Beilstein J. Nanotechnol. 2013, 4, 385–393.

Supporting Information

The Supporting Information contains two appendices: (1) a detailed description of the tip–sample interaction model used in the simulations and (2) a brief derivation of the kinetic/potential energy of an eigenmode.

Supporting Information File 1: Appendices
Format: PDF Size: 92.7 KB Download

Cite the Following Article

Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes
Daniel Kiracofe, Arvind Raman and Dalia Yablon
Beilstein J. Nanotechnol. 2013, 4, 385–393.

How to Cite

Kiracofe, D.; Raman, A.; Yablon, D. Beilstein J. Nanotechnol. 2013, 4, 385–393. doi:10.3762/bjnano.4.45

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Schlosser, J.; Keller, M.; Fouladi, K.; Eslami, B. Strengthening Polylactic Acid by Salification: Surface Characterization Study. Polymers 2023, 15, 492. doi:10.3390/polym15030492
  • Burgo, T. L.; Pereira, G. K. R.; Iglesias, B. A.; Moreira, K. S.; Valandro, L. F. AFM advanced modes for dental and biomedical applications. Journal of the mechanical behavior of biomedical materials 2022, 136, 105475. doi:10.1016/j.jmbbm.2022.105475
  • Zhou, X.; Zhuo, R. Stability and contrast in bimodal amplitude modulation atomic force microscopy for different mode combinations in ambient air. AIP Advances 2022, 12, 055321. doi:10.1063/5.0085325
  • Martin-Jimenez, D.; Ruppert, M. G.; Ihle, A.; Ahles, S.; Wegner, H. A.; Schirmeisen, A.; Ebeling, D. Chemical bond imaging using torsional and flexural higher eigenmodes of qPlus sensors. Nanoscale 2022, 14, 5329–5339. doi:10.1039/d2nr01062c
  • Rajabifar, B.; Bajaj, A. K.; Reifenberger, R.; Proksch, R.; Raman, A. Discrimination of adhesion and viscoelasticity from nanoscale maps of polymer surfaces using bimodal atomic force microscopy. Nanoscale 2021, 13, 17428–17441. doi:10.1039/d1nr03437e
  • Dou, Z.; Qian, J.; Li, Y.; Lin, R.; Wang, T.; Wang, J.; Cheng, P.; Xu, Z. Enhancing higher-order eigenmodes of AFM using bridge/cantilever coupled system. Micron (Oxford, England : 1993) 2021, 150, 103147. doi:10.1016/j.micron.2021.103147
  • Collinson, D. W.; Sheridan, R. J.; Palmeri, M. J.; Brinson, L. C. Best practices and recommendations for accurate nanomechanical characterization of heterogeneous polymer systems with atomic force microscopy. Progress in Polymer Science 2021, 119, 101420. doi:10.1016/j.progpolymsci.2021.101420
  • Kouchaksaraei, M. G.; Bahrami, A. High-resolution compositional mapping of surfaces in non-contact atomic force microscopy by a new multi-frequency excitation. Ultramicroscopy 2021, 227, 113317. doi:10.1016/j.ultramic.2021.113317
  • Huang, Z.; Wen, P.; Zhou, X. Comparison of Different Excitation Schemes in Bimodal Atomic Force Microscopy in Air and Liquid Environments. Acta Mechanica Solida Sinica 2020, 34, 163–173. doi:10.1007/s10338-020-00203-x
  • Damircheli, M.; Eslami, B. Design of V-shaped cantilevers for enhanced multifrequency AFM measurements. Beilstein journal of nanotechnology 2020, 11, 1525–1541. doi:10.3762/bjnano.11.135
  • Putnam, J.; Damircheli, M.; Eslami, B. Effects of laser spot positioning with optical beam deflection method on tapping mode and bimodal AFM. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 2020, 234, 675–690. doi:10.1177/1464419320951343
  • Shaik, N. H.; Reifenberger, R. G.; Raman, A. Nanomechanical mapping in air or vacuum using multi-harmonic signals in tapping mode atomic force microscopy. Nanotechnology 2020, 31, 455502. doi:10.1088/1361-6528/ab9390
  • Dou, Z.; Qian, J.; Li, Y.; Wang, Z.; Zhang, Y.; Lin, R.; Wang, T. Molecular dynamics simulation of bimodal atomic force microscopy. Ultramicroscopy 2020, 212, 112971. doi:10.1016/j.ultramic.2020.112971
  • Lee, B. J.; Lee, J. Beyond mass measurement for single microparticles via bimodal operation of microchannel resonators. Micro and Nano Systems Letters 2019, 7, 9. doi:10.1186/s40486-019-0088-3
  • Zhou, X.; Zhuo, R.; Wen, P.; Li, F. Power transfer in bimodal amplitude modulation atomic force microscopy in liquids: A numerical investigation. AIP Advances 2019, 9, 025305. doi:10.1063/1.5080136
  • Athanasopoulou, E.-N.; Nianias, N.; Ong, Q. K.; Stellacci, F. Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers. Nanoscale 2018, 10, 23027–23036. doi:10.1039/c8nr07657j
  • Cao, Y.; Verian, K. P. A VEDA simulation on cement paste: using dynamic atomic force microscopy to characterize cellulose nanocrystal distribution. MRS Communications 2017, 7, 672–676. doi:10.1557/mrc.2017.57
  • Shi, S.; Guo, D.; Luo, J. Enhanced phase and amplitude image contrasts of polymers in bimodal atomic force microscopy. RSC Advances 2017, 7, 11768–11776. doi:10.1039/c6ra27902c
  • Ikai, A. Chapter Four – Interaction Forces. The World of Nano-Biomechanics; Elsevier, 2017; pp 63–76. doi:10.1016/b978-0-444-63686-7.00004-3
  • Ikai, A. Nanomechanical Bases of Cell Structure. The World of Nano-Biomechanics; Elsevier, 2017; pp 219–247. doi:10.1016/b978-0-444-63686-7.00012-2
Other Beilstein-Institut Open Science Activities