Characterization of electroforming-free titanium dioxide memristors

John Paul Strachan, J. Joshua Yang, L. A. Montoro, C. A. Ospina, A. J. Ramirez, A. L. D. Kilcoyne, Gilberto Medeiros-Ribeiro and R. Stanley Williams
Beilstein J. Nanotechnol. 2013, 4, 467–473. https://doi.org/10.3762/bjnano.4.55

Cite the Following Article

Characterization of electroforming-free titanium dioxide memristors
John Paul Strachan, J. Joshua Yang, L. A. Montoro, C. A. Ospina, A. J. Ramirez, A. L. D. Kilcoyne, Gilberto Medeiros-Ribeiro and R. Stanley Williams
Beilstein J. Nanotechnol. 2013, 4, 467–473. https://doi.org/10.3762/bjnano.4.55

How to Cite

Strachan, J. P.; Yang, J. J.; Montoro, L. A.; Ospina, C. A.; Ramirez, A. J.; Kilcoyne, A. L. D.; Medeiros-Ribeiro, G.; Williams, R. S. Beilstein J. Nanotechnol. 2013, 4, 467–473. doi:10.3762/bjnano.4.55

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Jiang, L.; Jin, Y.; Zhao, Y.; Meng, J.; Zhang, J.; Chen, X.; Wu, X.; Xiao, Y.; Tao, Z.; Jiang, B.; Wen, X.; Ye, C. An Efficient Design of TaOx‐Based Memristor by Inserting an Ultrathin Al2O3 Layer with High Stability for Neuromorphic Computing and Logic Operation. Advanced Physics Research 2023, 2. doi:10.1002/apxr.202200086
  • Baranowski, M.; Sachser, R.; Marinković, B. P.; Ivanović, S. D.; Huth, M. Charge Transport inside TiO2 Memristors Prepared via FEBID. Nanomaterials (Basel, Switzerland) 2022, 12, 4145. doi:10.3390/nano12234145
  • Soni., K.; Sahoo, S. A Review On Different Memristor Modeling And Applications. In 2022 International Mobile and Embedded Technology Conference (MECON), IEEE, 2022. doi:10.1109/mecon53876.2022.9752214
  • Ismail, M.; Mahata, C.; Kim, S. Forming-free Pt/Al2O3/HfO2/HfAlOx/TiN memristor with controllable multilevel resistive switching and neuromorphic characteristics for artificial synapse. Journal of Alloys and Compounds 2022, 892, 162141. doi:10.1016/j.jallcom.2021.162141
  • Khan, M. U.; Furqan, C. M.; Kim, J.; Khan, S. A.; Saqib, Q. M.; Chougale, M. Y.; Shaukat, R. A.; Kang, M. H.; Kobayashi, N. P.; Bae, J.; Kwok, H.-S. Asymmetric GaN/ZnO Engineered Resistive Memory Device for Electronic Synapses. ACS Applied Electronic Materials 2022, 4, 297–307. doi:10.1021/acsaelm.1c01006
  • Won Hwang, S.; Hong, D.-K. Flexible Memristive Devices Based on Graphene Quantum-Dot Nanocomposites. Computers, Materials & Continua 2022, 72, 3283–3297. doi:10.32604/cmc.2022.025931
  • Płacheta, K.; Kot, A.; Banas-Gac, J.; Zając, M.; Sikora, M.; Radecka, M.; Zakrzewska, K. Evolution of Surface Properties of Titanium Oxide Thin Films. SSRN Electronic Journal 2022. doi:10.2139/ssrn.4165207
  • Srivastava, S.; Thomas, J. P.; Guan, X.; Leung, K. T. Induced Complementary Resistive Switching in Forming-Free TiOx/TiO2/TiOx Memristors. ACS applied materials & interfaces 2021, 13, 43022–43029. doi:10.1021/acsami.1c09775
  • Iskhakzay, R. M. H.; Voronkovskii, V. A.; Aliev, V. S.; Gritsenko, V. A. Resistive Switching Effect in Thermal SiO2 Films Treated in Electron-Cyclotron Resonance Hydrogen Plasma. In 2021 IEEE 22nd International Conference of Young Professionals in Electron Devices and Materials (EDM), IEEE, 2021. doi:10.1109/edm52169.2021.9507691
  • Dittmann, R.; Menzel, S.; Waser, R. Nanoionic memristive phenomena in metal oxides: the valence change mechanism. Advances in Physics 2021, 70, 155–349. doi:10.1080/00018732.2022.2084006
  • Gismatulin, A. A.; Kamaev, G. N.; Kruchinin, V. N.; Gritsenko, V. A.; Orlov, O. M.; Chin, A. Charge transport mechanism in the forming-free memristor based on silicon nitride. Scientific reports 2021, 11, 2417. doi:10.1038/s41598-021-82159-7
  • Ali, S.; Khan, S.; Khan, A.; Bermak, A. Memristor Fabrication Through Printing Technologies: A Review. IEEE Access 2021, 9, 95970–95985. doi:10.1109/access.2021.3094027
  • Gismatulin, A. A.; Voronkovskii, V. A.; Kamaev, G. N.; Novikov, Y. N.; Kruchinin, V. N.; Krivyakin, G. K.; Gritsenko, V. A.; Prosvirin, I. P.; Chin, A. Electronic structure and charge transport mechanism in a forming-free SiO x -based memristor. Nanotechnology 2020, 31, 505704. doi:10.1088/1361-6528/abb505
  • Illarionov, G. A.; Morozova, S. M.; Chrishtop, V. V.; Einarsrud, M.-A.; Morozov, M. I. Memristive TiO2: Synthesis, Technologies, and Applications. Frontiers in chemistry 2020, 8, 724. doi:10.3389/fchem.2020.00724
  • Alsaiari, M. A.; Alhemiary, N. A.; Umar, A.; Hayden, B. E. Growth of amorphous, anatase and rutile phase TiO2 thin films on Pt/TiO2/SiO2/Si (SSTOP) substrate for resistive random access memory (ReRAM) device application. Ceramics International 2020, 46, 16310–16320. doi:10.1016/j.ceramint.2020.03.188
  • Wang, Z.; Yang, R.; Huang, H.-M.; He, H.-K.; Shaibo, J.; Guo, X. Electroforming‐Free Artificial Synapses Based on Proton Conduction in α‐MoO3 Films. Advanced Electronic Materials 2020, 6, 1901290. doi:10.1002/aelm.201901290
  • Hu, L.; Han, W.; Wang, H. Resistive switching and synaptic learning performance of a TiO2 thin film based device prepared by sol–gel and spin coating techniques. Nanotechnology 2019, 31, 155202. doi:10.1088/1361-6528/ab6472
  • Dash, C. S.; Prabaharan, S. Science and Technological Understanding of Nano-ionic Resistive Memories (RRAM). Nanoscience & Nanotechnology-Asia 2019, 9, 444–461. doi:10.2174/2210681208666180621095241
  • Sahoo, S.; Manoravi, P.; Prabaharan, S. Titania Based Nano-ionic Memristive Crossbar Arrays: Fabrication and Resistive Switching Characteristics. Nanoscience & Nanotechnology-Asia 2019, 9, 486–493. doi:10.2174/2210681208666180628122146
  • Srivastava, S.; Thomas, J. P.; Leung, K. T. Programmable, electroforming-free TiOx/TaOx heterojunction-based non-volatile memory devices. Nanoscale 2019, 11, 18159–18168. doi:10.1039/c9nr06403f

Patents

  • DEFFERRIERE THOMAS; KALAEV DMITRI; TULLER HARRY L; RUPP JENNIFER LILIA. Optoelectronic memristor devices including one or more solid electrolytes with electrically controllable optical properties. US 10910559 B2, Feb 2, 2021.
  • CHO HANS S. Resistive memory devices with an oxygen-supplying layer. US 9847482 B2, Dec 19, 2017.
Other Beilstein-Institut Open Science Activities