Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime

Aditya Kumar, Thorsten Staedler and Xin Jiang
Beilstein J. Nanotechnol. 2013, 4, 66–71. https://doi.org/10.3762/bjnano.4.7

Cite the Following Article

Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime
Aditya Kumar, Thorsten Staedler and Xin Jiang
Beilstein J. Nanotechnol. 2013, 4, 66–71. https://doi.org/10.3762/bjnano.4.7

How to Cite

Kumar, A.; Staedler, T.; Jiang, X. Beilstein J. Nanotechnol. 2013, 4, 66–71. doi:10.3762/bjnano.4.7

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Liu, M.; Yan, F.; Gao, C. Influence of sliding velocity on microscratch response of carbohydrate polymers by Berkovich indenter. Polymer Testing 2022, 109, 107542. doi:10.1016/j.polymertesting.2022.107542
  • Liu, M.; Yan, F. Comparison of Microscratch Responses of Metals Between Berkovich and Rockwell C Indenters Under Progressive Normal Force. Tribology Letters 2021, 69, 1–16. doi:10.1007/s11249-021-01530-x
  • Liu, M. Influence of Sample Tilt and Applied Load on Microscratch Behavior of Copper Under a Spherical Diamond Indenter. Tribology Letters 2021, 69, 1–19. doi:10.1007/s11249-021-01466-2
  • Khala, M. J.; Hare, C.; Wu, C.-Y.; Murtagh, M. J.; Venugopal, N.; Freeman, T. The importance of a velocity-dependent friction coefficient in representing the flow behaviour of a blade-driven powder bed. Powder Technology 2021, 385, 264–272. doi:10.1016/j.powtec.2021.02.060
  • Hu, J.; Song, H.; Sandfeld, S.; Liu, X.; Wei, Y. Multiscale study of the dynamic friction coefficient due to asperity plowing. Friction 2020, 9, 822–839. doi:10.1007/s40544-020-0438-4
  • Li, S.; Zhang, S.; Chen, Z.; Feng, X.-Q.; Li, Q. Length Scale Effect in Frictional Aging of Silica Contacts. Physical review letters 2020, 125, 215502. doi:10.1103/physrevlett.125.215502
  • Prasad, R.; Kumar, H.; Kumar, P.; Tewari, S. P.; Singh, J. K. Filler Dispersion and Unidirectional Sliding Characteristics of As-Cast and Multi-Pass Friction Stir Processed ZrB2/AA7075 In-Situ Composites. Journal of Tribology 2020, 143. doi:10.1115/1.4048885
  • Hu, J.; Song, H.; Sandfeld, S.; Liu, X.; Wei, Y. Multiscale study of the dynamic friction coefficient due to asperity plowing. 2020.
  • Umer, J.; Saleem, F.; Asim, M.; Usman, M.; Kamran, M.; Alam, K.; Mohammadpour. Thermal activation Eyring energy approach to characterise the dependence of nanoscale friction on the surface roughness. Tribology International 2020, 151, 106532. doi:10.1016/j.triboint.2020.106532
  • Belviso, F.; Cammarata, A.; Missaoui, J.; Polcar, T. Effect of electric fields in low-dimensional materials: Nanofrictional response as a case study. Physical Review B 2020, 102, 155433. doi:10.1103/physrevb.102.155433
  • Van Sang, L.; Yano, A.; Osaka, A. I.; Sugimura, N.; Washizu, H. Adaptive Smoothed Particle Hydrodynamics for Study of Friction of Silica at Micronscale. Tribology Online 2020, 15, 259–264. doi:10.2474/trol.15.259
  • Gao, C.; Liu, M. Effect of Sample Tilt on Measurement of Friction Coefficient by Constant-Load Scratch Testing of Copper with a Spherical Indenter. Journal of Testing and Evaluation 2020, 48, 970–989. doi:10.1520/jte20180719
  • Tang, H.; Yang, W.; Wenjun, L.; Ma, J.; Luo, X. Characteristic of fixed abrasive polishing for fused silica in anhydrous environment. Optik 2020, 202, 163623. doi:10.1016/j.ijleo.2019.163623
  • Tong, R.; Liu, G. Modelling of Unidirectional Reciprocating Sliding Contacts of Nanoscale Textured Surfaces Considering the Impact Effects in Microgravity Environment. Microgravity Science and Technology 2019, 32, 155–166. doi:10.1007/s12217-019-09753-3
  • Staedler, T.; Diehl, K.; Fuchs, R.; Meyer, J.; Kumar, A.; Jiang, X. Nanoindentation Based Colloid Probe Technique: A Unique Opportunity to Study the Mechanical Contact of Individual Micron Sized Particles. Particles in Contact; Springer International Publishing, 2019; pp 437–455. doi:10.1007/978-3-030-15899-6_15
  • Buciumeanu, M.; Faria, D.; Mesquita-Guimarães, J.; Silva, F. S. Tribological characterization of bioactive zirconia composite layers on zirconia structures. Ceramics International 2018, 44, 18663–18671. doi:10.1016/j.ceramint.2018.07.094
  • Ren, S.; Huang, J.; Cui, M.; Pu, J.; Wang, L. Improved adaptability of polyaryl-ether-ether-ketone with texture pattern and graphite-like carbon film for bio-tribological applications. Applied Surface Science 2017, 400, 24–37. doi:10.1016/j.apsusc.2016.12.159
  • Khun, N. W.; Lee, P. M.; Toh, W. Q.; Liu, E. Tribological Behavior of Nickel-Doped Diamond-Like Carbon Thin Films Prepared on Silicon Substrates via Magnetron Sputtering Deposition. Tribology Transactions 2016, 59, 845–855. doi:10.1080/10402004.2015.1110864
  • Deng, S.-q.; Godfrey, A.-W.; Liu, W.; Zhang, C.; Xu, B. Effects of normal stress, surface roughness, and initial grain size on the microstructure of copper subjected to platen friction sliding deformation. International Journal of Minerals, Metallurgy, and Materials 2016, 23, 57–69. doi:10.1007/s12613-016-1211-6
  • Kumar, A.; Bhushan, B. Nanomechanical, nanotribological and macrotribological characterization of hard coatings and surface treatment of H-13 steel. Tribology International 2015, 81, 149–158. doi:10.1016/j.triboint.2014.08.010
Other Beilstein-Institut Open Science Activities