Sublattice asymmetry of impurity doping in graphene: A review

James A. Lawlor and Mauro S. Ferreira
Beilstein J. Nanotechnol. 2014, 5, 1210–1217. https://doi.org/10.3762/bjnano.5.133

Cite the Following Article

Sublattice asymmetry of impurity doping in graphene: A review
James A. Lawlor and Mauro S. Ferreira
Beilstein J. Nanotechnol. 2014, 5, 1210–1217. https://doi.org/10.3762/bjnano.5.133

How to Cite

Lawlor, J. A.; Ferreira, M. S. Beilstein J. Nanotechnol. 2014, 5, 1210–1217. doi:10.3762/bjnano.5.133

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ikram, M.; Bari, M. A.; Bilal, M.; Jamal, F.; Nabgan, W.; Haider, J.; Haider, A.; Nazir, G.; Khan, A. D.; Khan, K.; Tareen, A. K.; Khan, Q.; Ali, G.; Imran, M.; Caffrey, E.; Maqbool, M. Innovations in the synthesis of graphene nanostructures for bio and gas sensors. Biomaterials advances 2022, 145, 213234. doi:10.1016/j.bioadv.2022.213234
  • Solomon, F.; Power, S. R. Valley current generation using biased bilayer graphene dots. Physical Review B 2021, 103, 235435. doi:10.1103/physrevb.103.235435
  • Aktor, T.; Garcia, J. H.; Roche, S.; Jauho, A.-P.; Power, S. R. Valley Hall effect and nonlocal resistance in locally gapped graphene. Physical Review B 2021, 103, 115406. doi:10.1103/physrevb.103.115406
  • Bafekry, A.; Stampfl, C. Band-gap control of graphenelike borocarbonitride g − BC 6 N bilayers by electrical gating. Physical Review B 2020, 102, 195411. doi:10.1103/physrevb.102.195411
  • Sahalianov, I. Y.; Radchenko, T. M.; Tatarenko, V. A.; Cuniberti, G. Sensitivity to strains and defects for manipulating the conductivity of graphene. Europhysics Letters 2020, 132, 48002. doi:10.1209/0295-5075/132/48002
  • Noori, K.; Biswas, H.; Quek, S. Y.; Rodin, A. Graphene-mediated interaction between hydrogen adsorbates. Physical Review B 2020, 101, 115421. doi:10.1103/physrevb.101.115421
  • Jewel, M. U.; Monne, M. A.; Mishra, B.; Chen, M. Y. Inkjet-Printed Molybdenum Disulfide and Nitrogen-Doped Graphene Active Layer High On/Off Ratio Transistors. Molecules (Basel, Switzerland) 2020, 25, 1081. doi:10.3390/molecules25051081
  • Damte, J. Y.; Zhu, Z.-J.; Lin, P.-J.; Yeh, C.-H.; Jiang, J.-C. B, N-co-doped graphene-supported Ir and Pt clusters for methane activation and C─C coupling: A density functional theory study. Journal of computational chemistry 2019, 41, 194–202. doi:10.1002/jcc.26088
  • Granzier-Nakajima, T.; Fujisawa, K.; Anil, V.; Terrones, M.; Yeh, Y. T. Controlling Nitrogen Doping in Graphene with Atomic Precision: Synthesis and Characterization. Nanomaterials (Basel, Switzerland) 2019, 9, 425. doi:10.3390/nano9030425
  • Fedorov, A.; Yashina, L. V.; Vilkov, O. Y.; Laubschat, C.; Vyalikh, D.; Usachov, D. Y. Spin-polarized Fermi surface, hole-doping and band gap in graphene with boron impurities. Nanoscale 2018, 10, 22810–22817. doi:10.1039/c8nr08339h
  • da Rocha, C. G.; Rocha, A. R.; Venezuela, P.; Garcia, J. H.; Ferreira, M. S. Finite-size correction scheme for supercell calculations in Dirac-point two-dimensional materials. Scientific reports 2018, 8, 9348. doi:10.1038/s41598-018-27632-6
  • Pochet, P.; McGuigan, B. C.; Coraux, J.; Johnson, H. T. Toward Moir\'e engineering in 2D materials via dislocation theory. Applied Materials Today 2017, 9, 240–250. doi:10.1016/j.apmt.2017.07.007
  • Ferreira, M. S.; da Rocha, C. G.; Lawlor, J. A.; Venezuela, P.; Amorim, R. G.; Rocha, A. R. Commensurability effect on the electronic structure of carbon nanostructures: Impact on supercell calculations in nanotubes. EPL (Europhysics Letters) 2017, 117, 27005. doi:10.1209/0295-5075/117/27005
  • Alonso-Lanza, T.; Ayuela, A.; Aguilera-Granja, F. Substitutional 4d and 5d Impurities in Graphene. Physical chemistry chemical physics : PCCP 2016, 18, 21913–21920. doi:10.1039/c6cp04677k
  • Usachov, D. Y.; Fedorov, A.; Vilkov, O. Y.; Petukhov, A. E.; Rybkin, A. G.; Ernst, A.; Otrokov, M. M.; Chulkov, E. V.; Ogorodnikov, I. I.; Kuznetsov, M. V.; Yashina, L. V.; Kataev, E. Y.; Erofeevskaya, A. V.; Voroshnin, V. Y.; Adamchuk, V. K.; Laubschat, C.; Vyalikh, D. V. Large-Scale Sublattice Asymmetry in Pure and Boron-Doped Graphene. Nano letters 2016, 16, 4535–4543. doi:10.1021/acs.nanolett.6b01795
  • Aktor, T.; Jauho, A.-P.; Power, S. R. Electronic transport in graphene nanoribbons with sublattice-asymmetric doping. Physical Review B 2016, 93, 035446. doi:10.1103/physrevb.93.035446
  • Shaik, M.; Rao, V. K.; Gupta, M.; Murthy, K. S. R. C.; Jain, R. Chemiresistive gas sensor for the sensitive detection of nitrogen dioxide based on nitrogen doped graphene nanosheets. RSC Advances 2016, 6, 1527–1534. doi:10.1039/c5ra21184k
  • Dabrowski, P.; Rogala, M.; Wlasny, I.; Klusek, Z.; Kopciuszyński, M.; Jałochowski, M.; Strupinski, W.; Baranowski, J. M. Nitrogen doped epitaxial graphene on 4H-SiC(0001) – Experimental and theoretical study. Carbon 2015, 94, 214–223. doi:10.1016/j.carbon.2015.06.073
  • Lawlor, J. A.; Ferreira, M. S. Sublattice segregation of hydrogen adsorbates in carbon nanotubes. Physical Review B 2015, 92, 115405. doi:10.1103/physrevb.92.115405
  • Chaban, V. V.; Prezhdo, O. V. Nitrogen-Nitrogen Bonds Undermine Stability of N-Doped Graphene. Journal of the American Chemical Society 2015, 137, 11688–11694. doi:10.1021/jacs.5b05890

Patents

  • SETTNES MIKKEL; POWER STEPHEN R; PETERSEN DIRCH HJORTH; JAUHO ANTTI-PEKKA. Method for predicting the electronic properties of a system. EP 3040889 A1, July 6, 2016.
Other Beilstein-Institut Open Science Activities