The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

Markus Heine, Alexander Bartelt, Oliver T. Bruns, Denise Bargheer, Artur Giemsa, Barbara Freund, Ludger Scheja, Christian Waurisch, Alexander Eychmüller, Rudolph Reimer, Horst Weller, Peter Nielsen and Joerg Heeren
Beilstein J. Nanotechnol. 2014, 5, 1432–1440. https://doi.org/10.3762/bjnano.5.155

Cite the Following Article

The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver
Markus Heine, Alexander Bartelt, Oliver T. Bruns, Denise Bargheer, Artur Giemsa, Barbara Freund, Ludger Scheja, Christian Waurisch, Alexander Eychmüller, Rudolph Reimer, Horst Weller, Peter Nielsen and Joerg Heeren
Beilstein J. Nanotechnol. 2014, 5, 1432–1440. https://doi.org/10.3762/bjnano.5.155

How to Cite

Heine, M.; Bartelt, A.; Bruns, O. T.; Bargheer, D.; Giemsa, A.; Freund, B.; Scheja, L.; Waurisch, C.; Eychmüller, A.; Reimer, R.; Weller, H.; Nielsen, P.; Heeren, J. Beilstein J. Nanotechnol. 2014, 5, 1432–1440. doi:10.3762/bjnano.5.155

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Liebold, I.; Meyer, S.; Heine, M.; Kuhl, A.; Witt, J.; Eissing, L.; Fischer, A. W.; Koop, A. C.; Kluwe, J.; Wiesch, J. S. Z.; Wehmeyer, M.; Knippschild, U.; Scheja, L.; Heeren, J.; Bosurgi, L.; Worthmann, A. TREM2 Regulates the Removal of Apoptotic Cells and Inflammatory Processes during the Progression of NAFLD. Cells 2023, 12, 341. doi:10.3390/cells12030341
  • Aram, E.; Moeni, M.; Abedizadeh, R.; Sabour, D.; Sadeghi-Abandansari, H.; Gardy, J.; Hassanpour, A. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. Nanomaterials (Basel, Switzerland) 2022, 12, 3567. doi:10.3390/nano12203567
  • Ahmadpoor, F.; Masood, A.; Feliu, N.; Parak, W. J.; Shojaosadati, S. A. The Effect of Surface Coating of Iron Oxide Nanoparticles on Magnetic Resonance Imaging Relaxivity. Frontiers in Nanotechnology 2021, 3. doi:10.3389/fnano.2021.644734
  • Carambia, A.; Gottwick, C.; Schwinge, D.; Stein, S.; Digigow, R.; Şeleci, M.; Mungalpara, D.; Heine, M.; Schuran, F. A.; Corban, C.; Lohse, A. W.; Schramm, C.; Heeren, J.; Herkel, J. Nanoparticle-mediated targeting of autoantigen peptide to cross-presenting liver sinusoidal endothelial cells protects from CD8 T-cell-driven autoimmune cholangitis. Immunology 2021, 162, 452–463. doi:10.1111/imm.13298
  • Gutiérrez, L.; de la Cueva, L.; Moros, M.; Mazario, E.; de Bernardo, S.; de la Fuente, J. M.; Morales, M. P.; Salas, G. Aggregation effects on the magnetic properties of iron oxide colloids. Nanotechnology 2019, 30, 112001. doi:10.1088/1361-6528/aafbff
  • Wu, T.; Liang, X.; He, K.; Wei, T.; Wang, Y.; Lu, J.; Yao, Y.; Zhang, T.; Xue, Y.; Tang, M. MPA-modified CdTe quantum dots increased interleukin-1beta secretion through MyD88-dependent Toll-like receptor pathway and NLRP3 inflammasome activation in microglia. Toxicology in vitro : an international journal published in association with BIBRA 2018, 52, 41–51. doi:10.1016/j.tiv.2018.05.014
  • Wang, Y.; Tang, M. Review of in vitro toxicological research of quantum dot and potentially involved mechanisms. The Science of the total environment 2018, 625, 940–962. doi:10.1016/j.scitotenv.2017.12.334
  • Reifarth, M.; Hoeppener, S.; Schubert, U. S. Uptake and Intracellular Fate of Engineered Nanoparticles in Mammalian Cells: Capabilities and Limitations of Transmission Electron Microscopy—Polymer‐Based Nanoparticles. Advanced materials (Deerfield Beach, Fla.) 2018, 30, 1703704. doi:10.1002/adma.201703704
  • Liu, Y.; Workalemahu, B.; Jiang, X. The Effects of Physicochemical Properties of Nanomaterials on Their Cellular Uptake In Vitro and In Vivo. Small (Weinheim an der Bergstrasse, Germany) 2017, 13, 1701815. doi:10.1002/smll.201701815
  • Parvani, J. G.; Jackson, M. W. Silencing the roadblocks to effective triple-negative breast cancer treatments by siRNA nanoparticles. Endocrine-related cancer 2017, 24, R81–R97. doi:10.1530/erc-16-0482
  • Feliu, N.; Docter, D.; Heine, M.; del Pino, P.; Ashraf, S.; Kolosnjaj-Tabi, J.; Macchiarini, P.; Nielsen, P. E.; Alloyeau, D.; Gazeau, F.; Stauber, R. H.; Parak, W. J. In vivo degeneration and the fate of inorganic nanoparticles. Chemical Society reviews 2016, 45, 2440–2457. doi:10.1039/c5cs00699f
  • Bargheer, D.; Giemsa, A.; Freund, B.; Heine, M.; Waurisch, C.; Stachowski, G. M.; Hickey, S. G.; Eychmüller, A.; Heeren, J.; Nielsen, P. The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice. Beilstein journal of nanotechnology 2015, 6, 111–123. doi:10.3762/bjnano.6.11
  • Bargheer, D.; Nielsen, J.; Gébel, G.; Heine, M.; Salmen, S. C.; Stauber, R.; Weller, H.; Heeren, J.; Nielsen, P. The fate of a designed protein corona on nanoparticles in vitro and in vivo. Beilstein journal of nanotechnology 2015, 6, 36–46. doi:10.3762/bjnano.6.5
Other Beilstein-Institut Open Science Activities