In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?

Moritz Nazarenus, Qian Zhang, Mahmoud G. Soliman, Pablo del Pino, Beatriz Pelaz, Susana Carregal-Romero, Joanna Rejman, Barbara Rothen-Rutishauser, Martin J. D. Clift, Reinhard Zellner, G. Ulrich Nienhaus, James B. Delehanty, Igor L. Medintz and Wolfgang J. Parak
Beilstein J. Nanotechnol. 2014, 5, 1477–1490. https://doi.org/10.3762/bjnano.5.161

Cite the Following Article

In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?
Moritz Nazarenus, Qian Zhang, Mahmoud G. Soliman, Pablo del Pino, Beatriz Pelaz, Susana Carregal-Romero, Joanna Rejman, Barbara Rothen-Rutishauser, Martin J. D. Clift, Reinhard Zellner, G. Ulrich Nienhaus, James B. Delehanty, Igor L. Medintz and Wolfgang J. Parak
Beilstein J. Nanotechnol. 2014, 5, 1477–1490. https://doi.org/10.3762/bjnano.5.161

How to Cite

Nazarenus, M.; Zhang, Q.; Soliman, M. G.; del Pino, P.; Pelaz, B.; Carregal-Romero, S.; Rejman, J.; Rothen-Rutishauser, B.; Clift, M. J. D.; Zellner, R.; Nienhaus, G. U.; Delehanty, J. B.; Medintz, I. L.; Parak, W. J. Beilstein J. Nanotechnol. 2014, 5, 1477–1490. doi:10.3762/bjnano.5.161

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Blanco-Cabra, N.; Alcàcer-Almansa, J.; Admella, J.; Arévalo-Jaimes, B. V.; Torrents, E. Nanomedicine against biofilm infections: A roadmap of challenges and limitations. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2024, 16, e1944. doi:10.1002/wnan.1944
  • Brouwer, H.; Porbahaie, M.; Boeren, S.; Busch, M.; Bouwmeester, H. The in vitro gastrointestinal digestion-associated protein corona of polystyrene nano- and microplastics increases their uptake by human THP-1-derived macrophages. Particle and fibre toxicology 2024, 21, 4. doi:10.1186/s12989-024-00563-z
  • Brouwer, H.; Porbahaie, M.; Boeren, S.; Busch, M.; Bouwmeester, H. The in vitro gastrointestinal digestion-associated protein corona of polystyrene nano- and microplastics increases their uptake by human THP-1-derived macrophages. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-3453458/v1
  • Zajdel, K.; Bartczak, D.; Frontczak-Baniewicz, M.; Ramsay, D. A.; Kowalik, P.; Sobczak, K.; Kamińska, I.; Wojciechowski, T.; Minikayev, R.; Goenaga-Infante, H.; Sikora, B. Nano-bio interactions of upconversion nanoparticles at subcellular level: biodistribution and cytotoxicity. Nanomedicine (London, England) 2023, 18, 233–258. doi:10.2217/nnm-2022-0320
  • Sokolova, V.; Loza, K.; Ebel, J. F.; Buer, J.; Westendorf, A. M.; Epple, M. Barium sulphate microparticles are taken up by three different cell types: HeLa, THP-1, and hMSC. Acta biomaterialia 2023, 164, 577–587. doi:10.1016/j.actbio.2023.03.043
  • Huang, Q.; Zhu, W.; Gao, X.; Liu, X.; Zhang, Z.; Xing, B. Nanoparticles-mediated ion channels manipulation: From their membrane interactions to bioapplications. Advanced drug delivery reviews 2023, 195, 114763. doi:10.1016/j.addr.2023.114763
  • Arroyo-Urea, E. M.; Muñoz-Hernando, M.; Leo-Barriga, M.; Herranz, F.; González-Paredes, A. A quality by design approach for the synthesis of palmitoyl-L-carnitine-loaded nanoemulsions as drug delivery systems. Drug delivery 2023, 30, 2179128. doi:10.1080/10717544.2023.2179128
  • Kostka, K.; Hosseini, S.; Epple, M. In-Vitro Cell Response to Strontium/Magnesium-Doped Calcium Phosphate Nanoparticles. Micro 2023, 3, 156–171. doi:10.3390/micro3010012
  • Dong, N.; Liu, Z.; He, H.; Lu, Y.; Qi, J.; Wu, W. "Hook&Loop" multivalent interactions based on disk-shaped nanoparticles strengthen active targeting. Journal of controlled release : official journal of the Controlled Release Society 2023, 354, 279–293. doi:10.1016/j.jconrel.2023.01.022
  • Kumar, A.; Das, N.; Rayavarapu, R. G. Role of Tunable Gold Nanostructures in Cancer Nanotheranostics: Implications on Synthesis, Toxicity, Clinical Applications and Their Associated Opportunities and Challenges. Journal of Nanotheranostics 2023, 4, 1–34. doi:10.3390/jnt4010001
  • Prylutska, S. V.; Franskevych, D. V.; Yemets, A. I. Cellular Biological and Molecular Genetic Effects of Carbon Nanomaterials in Plants. Cytology and Genetics 2022, 56, 351–360. doi:10.3103/s0095452722040077
  • Gu, M.; Li, W.; Jiang, L.; Li, X. Recent progress of rare earth doped hydroxyapatite nanoparticles: Luminescence properties, synthesis and biomedical applications. Acta biomaterialia 2022, 148, 22–43. doi:10.1016/j.actbio.2022.06.006
  • Zyuzin, M. V.; Hartmann, R.; Timin, A. S.; Carregal-Romero, S.; Parak, W. J.; Escudero, A. Biodegradable particles for protein delivery: Estimation of the release kinetics inside cells. Biomaterials advances 2022, 139, 212966. doi:10.1016/j.bioadv.2022.212966
  • Nešić, M. D.; Dučić, T.; Algarra, M.; Popović, I.; Stepić, M.; Gonçalves, M.; Petković, M. Lipid Status of A2780 Ovarian Cancer Cells after Treatment with Ruthenium Complex Modified with Carbon Dot Nanocarriers: A Multimodal SR-FTIR Spectroscopy and MALDI TOF Mass Spectrometry Study. Cancers 2022, 14, 1182. doi:10.3390/cancers14051182
  • Kang, Y.; Nack, L. M.; Liu, Y.; Qi, B.; Huang, Y.; Liu, Z.; Chakraborty, I.; Schulz, F.; Ahmed, A. A. A.; Clavo Poveda, M.; Hafizi, F.; Roy, S.; Mutas, M.; Holzapfel, M.; Sanchez-Cano, C.; Wegner, K. D.; Feliu, N.; Parak, W. J. Quantitative considerations about the size dependence of cellular entry and excretion of colloidal nanoparticles for different cell types. Chemtexts 2022, 8, 9. doi:10.1007/s40828-021-00159-6
  • Liu, X.; Qiu, F.; Hou, L.; Wang, X. Review of Noninvasive or Minimally Invasive Deep Brain Stimulation. Frontiers in behavioral neuroscience 2022, 15, 820017. doi:10.3389/fnbeh.2021.820017
  • Yan, H.; Cacioppo, M.; Megahed, S.; Arcudi, F.; Đorđević, L.; Zhu, D.; Schulz, F.; Prato, M.; Parak, W. J.; Feliu, N. Influence of the chirality of carbon nanodots on their interaction with proteins and cells. Nature communications 2021, 12, 7208. doi:10.1038/s41467-021-27406-1
  • Drees, C.; Rühl, P.; Czerny, J.; Chandra, G.; Bajorath, J.; Haase, M.; Heinemann, S. H.; Piehler, J. Diffraction-Unlimited Photomanipulation at the Plasma Membrane via Specifically Targeted Upconversion Nanoparticles. Nano letters 2021, 21, 8025–8034. doi:10.1021/acs.nanolett.1c02267
  • Talianov, P. M.; Peltek, O. O.; Masharin, M. A.; Khubezhov, S. A.; Baranov, M. A.; Drabavičius, A.; Timin, A. S.; Zelenkov, L. E.; Pushkarev, A. P.; Makarov, S. V.; Zyuzin, M. V. Halide Perovskite Nanocrystals with Enhanced Water Stability for Upconversion Imaging in a Living Cell. The journal of physical chemistry letters 2021, 12, 8991–8998. doi:10.1021/acs.jpclett.1c01968
  • Białas, N.; Müller, E. K.; Epple, M.; Hilger, I. Silica-coated calcium phosphate nanoparticles for gene silencing of NF-κB p65 by siRNA and their impact on cellular players of inflammation. Biomaterials 2021, 276, 121013. doi:10.1016/j.biomaterials.2021.121013
Other Beilstein-Institut Open Science Activities