Electronic and electrochemical doping of graphene by surface adsorbates

Hugo Pinto and Alexander Markevich
Beilstein J. Nanotechnol. 2014, 5, 1842–1848. https://doi.org/10.3762/bjnano.5.195

Cite the Following Article

Electronic and electrochemical doping of graphene by surface adsorbates
Hugo Pinto and Alexander Markevich
Beilstein J. Nanotechnol. 2014, 5, 1842–1848. https://doi.org/10.3762/bjnano.5.195

How to Cite

Pinto, H.; Markevich, A. Beilstein J. Nanotechnol. 2014, 5, 1842–1848. doi:10.3762/bjnano.5.195

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Abdel All, N.; Khouqeer, G.; Almokhtar, M. Raman characteristics of graphene/quartz and graphene/Ag nanoparticles/quartz substrate: Laser power dependence. Optical Materials 2024, 149, 115118. doi:10.1016/j.optmat.2024.115118
  • Göhler, F.; Schädlich, P.; Rösch, N.; Zeißig, M.; Seyller, T. Transfer doping of epitaxial graphene on SiC(0001) using Cs. 2D Materials 2024, 11, 25016. doi:10.1088/2053-1583/ad2192
  • Pawelski, D.; Plonska-Brzezinska, M. E. Microwave-Assisted Synthesis as a Promising Tool for the Preparation of Materials Containing Defective Carbon Nanostructures: Implications on Properties and Applications. Materials (Basel, Switzerland) 2023, 16, 6549. doi:10.3390/ma16196549
  • Fuhr, N. E.; Azize, M.; Bishop, D. J. Non-linear pH responses of passivated graphene-based field-effect transistors. Journal of Applied Physics 2023, 134. doi:10.1063/5.0165876
  • Neubert, T. J.; Balasubramanian, K. doi:10.1002/9783527843374.ch11
  • Nasiruddin, M.; Wang, Z.; Waizumi, H.; Takaoka, T.; Sainoo, Y.; Ando, A.; Arafune, R.; Fukuyama, M.; Hibara, A.; Komeda, T. Solvation Effects on the Electrical Properties of a Microfluid-Assisted Solution Field-Effect Transistor with Atomically Thin MoS2 Layers. ACS Applied Nano Materials 2023, 6, 15175–15182. doi:10.1021/acsanm.3c02828
  • Widhiyanuriyawan, D.; Hamidi, N.; Darjito; Hatib, R.; Widhiyanurrochmansyah, R. Fabrication of Perovskite Solar Cell (PSC) Using NiO/GO Material. In 2023 3rd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), IEEE, 2023. doi:10.1109/ice3is59323.2023.10335210
  • Bagade, S. S.; Patel, S.; Malik, M. M.; Patel, P. K. Recent Advancements in Applications of Graphene to Attain Next-Level Solar Cells. 2023, 9, 70. doi:10.3390/c9030070
  • Chendake, Y.; Mhetre, H.; Khatavkar, S.; Mehtre, V.; Namekar, S.; Kaduskar, V.; Chougule, P. Graphene: A Promising Material for Flexible Electronic Devices. Recent Advances in Graphene Nanophotonics; Springer Nature Switzerland, 2023; pp 83–118. doi:10.1007/978-3-031-28942-2_5
  • Lee, F.; Tripathi, M.; Sanchez Salas, R.; Ogilvie, S. P.; Amorim Graf, A.; Jurewicz, I.; Dalton, A. B. Localised strain and doping of 2D materials. Nanoscale 2023, 15, 7227–7248. doi:10.1039/d2nr07252a
  • Zhang, R.; Jiang, J.; Wu, W. Wearable chemical sensors based on 2D materials for healthcare applications. Nanoscale 2023, 15, 3079–3105. doi:10.1039/d2nr05447g
  • Yang, M.; Ye, Z.; Sun, C.-H.; Zhu, L.; Hajizadegan, M.; Chen, P.-Y. A Lightweight, Zero-Power Intermodulation Sensor Based on the Graphene Oscillator. IEEE Sensors Journal 2023, 23, 3243–3250. doi:10.1109/jsen.2022.3227891
  • Martins, G. F.; Cardoso, B. d. P.; Galamba, N.; Cabral, B. J. C. Solar–Thermal Fuels and the Role of Carbon Nanomaterials: A Perspective with Emphasis on the Azobenzene System. Energy & Fuels 2023, 37, 1731–1756. doi:10.1021/acs.energyfuels.2c03677
  • Cha, W.; Heo, C.; Lee, S.; Yun, S. J.; Cho, B. W.; Ha, T.; Lee, Y. H. Probing Interfacial Charge Transfer between Amyloid-β and Graphene during Amyloid Fibrillization Using Raman Spectroscopy. ACS nano 2023, 17, 4834–4842. doi:10.1021/acsnano.2c11428
  • Zhang, J.; Sohier, T. D. P.; Casula, M.; Chen, Z.; Caillaux, J.; Papalazarou, E.; Perfetti, L.; Petaccia, L.; Bendounan, A.; Taleb-Ibrahimi, A.; Santos-Cottin, D.; Klein, Y.; Gauzzi, A.; Marsi, M. Manipulating Dirac States in BaNiS2 by Surface Charge Doping. Nano letters 2023, 23, 1830–1835. doi:10.1021/acs.nanolett.2c04701
  • Ju, W.; Lee, S. Capacitive NO2 Detection Using CVD Graphene-Based Device. Nanomaterials (Basel, Switzerland) 2023, 13, 243. doi:10.3390/nano13020243
  • Negara, S. P. J.; Raya, I.; Maming, M.; Natsir, H. Synthesis of graphene oxide from batteries carbon waste using liquid-phase exfoliation method. In PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON FRONTIER OF DIGITAL TECHNOLOGY TOWARDS A SUSTAINABLE SOCIETY, AIP Publishing, 2023. doi:10.1063/5.0124056
  • Almokhtar, M.; Abdel All, N.; Khouqeer, G. Raman Characteristics of Graphene/Quartz and Graphene/Ag Nanoparticles/Quartz Substrate: Laser. Elsevier BV 2023. doi:10.2139/ssrn.4644385
  • Tiwari, P.; Tiwari, S. Detection and modulation of neurodegenerative processes using graphene-based nanomaterials: Nanoarchitectonics and applications. Advances in colloid and interface science 2022, 311, 102824. doi:10.1016/j.cis.2022.102824
  • Jungnickel, R.; Mirabella, F.; Stockmann, J. M.; Radnik, J.; Balasubramanian, K. Graphene-on-gold surface plasmon resonance sensors resilient to high-temperature annealing. Analytical and bioanalytical chemistry 2022, 415, 371–377. doi:10.1007/s00216-022-04450-4
Other Beilstein-Institut Open Science Activities