Rapid degradation of zinc oxide nanoparticles by phosphate ions

Rudolf Herrmann, F. Javier García-García and Armin Reller
Beilstein J. Nanotechnol. 2014, 5, 2007–2015. https://doi.org/10.3762/bjnano.5.209

Cite the Following Article

Rapid degradation of zinc oxide nanoparticles by phosphate ions
Rudolf Herrmann, F. Javier García-García and Armin Reller
Beilstein J. Nanotechnol. 2014, 5, 2007–2015. https://doi.org/10.3762/bjnano.5.209

How to Cite

Herrmann, R.; García-García, F. J.; Reller, A. Beilstein J. Nanotechnol. 2014, 5, 2007–2015. doi:10.3762/bjnano.5.209

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhao, F.; Gao, A.; Liao, Q.; Li, Y.; Ullah, I.; Zhao, Y.; Ren, X.; Tong, L.; Li, X.; Zheng, Y.; Chu, P. K.; Wang, H. Balancing the Anti‐Bacterial and Pro‐Osteogenic Properties of Ti‐Based Implants by Partial Conversion of ZnO Nanorods into Hybrid Zinc Phosphate Nanostructures. Advanced Functional Materials 2024. doi:10.1002/adfm.202311812
  • Saber, G.; Badie, G.; El‐Dissouky, A.; Ebrahim, S.; Shokry, A. 3‐Aminopropyl Triethoxysilane Capped ZnO Quantum Dots for Acrylamide Detection. Advanced Quantum Technologies 2023. doi:10.1002/qute.202300154
  • Daniel, A. I.; Keyster, M.; Klein, A. Biogenic zinc oxide nanoparticles: A viable agricultural tool to control plant pathogenic fungi and its potential effects on soil and plants. The Science of the total environment 2023, 897, 165483. doi:10.1016/j.scitotenv.2023.165483
  • Gupta, J.; Hassan, P. A.; Barick, K. C. Multifunctional ZnO nanostructures: a next generation nanomedicine for cancer therapy, targeted drug delivery, bioimaging, and tissue regeneration. Nanotechnology 2023, 34, 282003. doi:10.1088/1361-6528/accc35
  • Sonntag, S. R.; Gniesmer, S.; Gapeeva, A.; Offermann, K. J.; Adelung, R.; Mishra, Y. K.; Cojocaru, A.; Kaps, S.; Grisanti, S.; Grisanti, S.; Tura, A. In Vitro Evaluation of Zinc Oxide Tetrapods as a New Material Component for Glaucoma Implants. Life (Basel, Switzerland) 2022, 12, 1805. doi:10.3390/life12111805
  • Chen, Y.; Xue, Q.; Luo, W.; Sun, Y.; Zhang, X.; Lu, D.; Qian, X.; Chen, C.-C.; Li, M.; Hang, T. Sol–Gel-Derived Biodegradable Er-Doped ZnO/Polyethylene Glycol Nanoparticles for Cell Imaging. ACS Applied Nano Materials 2022, 5, 7103–7112. doi:10.1021/acsanm.2c01049
  • Rodrigues, J.; Pereira, S. O.; Zanoni, J.; Falcão, B. P.; Santos, N. F.; Moura, J.; Soares, M.; Rino, L.; Costa, F. M.; Monteiro, T. The impact of physiological buffer solutions on zinc oxide nanostructures: zinc phosphate conversion. Materials Today Chemistry 2022, 23, 100629. doi:10.1016/j.mtchem.2021.100629
  • Swaminathan, N.; Sharma, N.; Nerthigan, Y.; Wu, H.-F. Self-assembled diphenylalanine-zinc oxide hybrid nanostructures as a highly selective luminescent biosensor for trypsin detection. Applied Surface Science 2021, 554, 149600. doi:10.1016/j.apsusc.2021.149600
  • Lee, G.; Lee, B.; Kim, K.-T. Mechanisms and effects of zinc oxide nanoparticle transformations on toxicity to zebrafish embryos. Environmental Science: Nano 2021, 8, 1690–1700. doi:10.1039/d1en00305d
  • Deniaud, A. Imaging inorganic nanomaterial fate down to the organelle level. Metallomics : integrated biometal science 2021, 13. doi:10.1093/mtomcs/mfab006
  • Landa, P. Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms. Plant physiology and biochemistry : PPB 2021, 161, 12–24. doi:10.1016/j.plaphy.2021.01.039
  • Arun, D.; Mudiyanselage, D. A.; Mohamed, R. G.; Liddell, M. J.; Hassan, N. M. M.; Sharma, D. Does the addition of zinc oxide nanoparticles improve the antibacterial properties of direct dental composite resins? A systematic review. Materials (Basel, Switzerland) 2020, 14, 40. doi:10.3390/ma14010040
  • Popescu, T.; Matei, C. O.; Vlaicu, I. D.; Tivig, I.; Kuncser, A.; Stefan, M.; Ghica, D.; Miclea, L. C.; Savopol, T.; Culita, D. C.; Moisescu, M. G. Influence of surfactant-tailored Mn-doped ZnO nanoparticles on ROS production and DNA damage induced in murine fibroblast cells. Scientific reports 2020, 10, 18062. doi:10.1038/s41598-020-74816-0
  • Irikura, K.; Marken, F.; Fletcher, P. J.; Kociok-Köhn, G.; Zanoni, M. V. B. Direct and indirect light energy harvesting with films of ambiently deposited ZnO nanoparticles. Applied Surface Science 2020, 527, 146927. doi:10.1016/j.apsusc.2020.146927
  • Rosenberg, M.; Visnapuu, M.; Vija, H.; Kisand, V.; Kasemets, K.; Kahru, A.; Ivask, A. Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces. Scientific reports 2020, 10, 13478. doi:10.1038/s41598-020-70169-w
  • Vannozzi, L.; Gouveia, P.; Pingue, P.; Canale, C.; Ricotti, L. Novel Ultrathin Films Based on a Blend of PEG-b-PCL and PLLA and Doped with ZnO Nanoparticles. ACS applied materials & interfaces 2020, 12, 21398–21410. doi:10.1021/acsami.0c00154
  • Rosenberg, M.; Visnapuu, M.; Vija, H.; Kisand, V.; Kasemets, K.; Kahru, A.; Ivask, A. Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces. Cold Spring Harbor Laboratory 2020. doi:10.1101/2020.03.18.996967
  • Geuli, O.; Mandler, D. Overcoming the barrier of conventional electrochemical deposition of inorganic composites. Chemical communications (Cambridge, England) 2020, 56, 379–382. doi:10.1039/c9cc07039g
  • Huang, S.; Xuan, W.; Liu, S.; Tao, X.; Xu, H.; Zhan, S.; Chen, J.; Cao, Z.; Jin, H.; Dong, S.; Zhou, H.; Wang, X.; Kim, J. M.; Luo, J. Ultra-thin atom layer deposited alumina film enables the precise lifetime control of fully biodegradable electronic devices. Nanoscale 2019, 11, 22369–22377. doi:10.1039/c9nr06566k
  • Buchegger, S.; Kamenac, A.; Fuchs, S.; Herrmann, R.; Houdek, P.; Gorzelanny, C.; Obermeier, A.; Heller, S.; Burgkart, R.; Stritzker, B.; Wixforth, A.; Westerhausen, C. Smart antimicrobial efficacy employing pH-sensitive ZnO-doped diamond-like carbon coatings. Scientific reports 2019, 9, 17246. doi:10.1038/s41598-019-53521-7
Other Beilstein-Institut Open Science Activities