Cite the Following Article
Effect of silver nanoparticles on human mesenchymal stem cell differentiation
Christina Sengstock, Jörg Diendorf, Matthias Epple, Thomas A. Schildhauer and Manfred Köller
Beilstein J. Nanotechnol. 2014, 5, 2058–2069.
https://doi.org/10.3762/bjnano.5.214
How to Cite
Sengstock, C.; Diendorf, J.; Epple, M.; Schildhauer, T. A.; Köller, M. Beilstein J. Nanotechnol. 2014, 5, 2058–2069. doi:10.3762/bjnano.5.214
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Fakeeha, G.; Al-Zamil, L.; Muthurangan, M.; Auda, S.; Balto, H. Size-Dependent Bioactivity of Silver Nanoparticles and Calcium Hydroxide Mixtures Against hDPSCs: An In Vitro Study. International journal of molecular sciences 2025, 26, 10604. doi:10.3390/ijms262110604
- Eya'ane Meva, F.; Pereira, A. R.; Ngnihamye, S. E.; Tchangou Njiemou, A. F.; Ntoumba, A. A.; Hzounda Fokou, J. B.; Beglau, T. H. Y.; Fetzer, M. N. A.; Kaul, M.; Schlierf, B.; Mintang Fongang, U. A.; Belle Ebanda Kedi, P.; Fannang, S. V.; Herrmann, M.; Janiak, C. Magnesium Hydroxide Nanoneedles Derived from Anthocleista schweinfurthii Gilg (Loganiaceae) Support Mesenchymal Stromal Cell Proliferation and Wound Healing. Journal of Inorganic and Organometallic Polymers and Materials 2025. doi:10.1007/s10904-025-03833-1
- Sima, M.; Libalova, H.; Simova, Z.; Echalar, B.; Palacka, K.; Cervena, T.; Klema, J.; Krejcik, Z.; Holan, V.; Rossner, P. Transcriptomic Profiling of Mouse Mesenchymal Stem Cells Exposed to Metal-Based Nanoparticles. International journal of molecular sciences 2025, 26, 7583. doi:10.3390/ijms26157583
- Holan, V.; Javorkova, E.; Hermankova, B.; Rossner, P. Combined Therapy Using Mesenchymal Stem Cells and Metal Nanoparticles: Perspectives for Ocular Injuries and Diseases. International journal of nanomedicine 2025, 20, 7403–7414. doi:10.2147/ijn.s527928
- Álvarez-Chimal, R.; Arenas-Alatorre, J. Á.; Álvarez-Pérez, M. A. Nanoparticle-polymer composite scaffolds for bone tissue engineering. A review. European Polymer Journal 2024, 213, 113093. doi:10.1016/j.eurpolymj.2024.113093
- Eya'ane Meva, F.; Pereira, R.; Ngnihamye, S. E.; Armel Florian, T. N.; Ntoumba, A. A.; Hzounda Fokou, j. B.; Beglau, T. H. Y.; Fetzer, M. N. A.; Kaul, M.; Schlierf, B.; Mintang Fongang, U. A.; Belle Ebanda Kedi, P.; Fannang, S. V.; Herrmann, M.; Janiak, C. Magnesium hydroxide nanoneedles derived fromAnthocleista schweinfurthiiGilg (Loganiaceae) support mesenchymal stromal cell proliferation and wound healing. Cold Spring Harbor Laboratory 2024. doi:10.1101/2024.04.29.591621
- Turovsky, E. A.; Baryshev, A. S.; Plotnikov, E. Y. Selenium Nanoparticles in Protecting the Brain from Stroke: Possible Signaling and Metabolic Mechanisms. Nanomaterials (Basel, Switzerland) 2024, 14, 160. doi:10.3390/nano14020160
- Ptasiewicz, M.; Chałas, R.; Idaszek, J.; Maksymiuk, P.; Kister, M.; Kister, K. A.; Kurzydłowski, K. J.; Magryś, A. In Vitro Effects of Silver Nanoparticles on Pathogenic Bacteria and on Metabolic Activity and Viability of Human Mesenchymal Stem Cells. Archivum immunologiae et therapiae experimentalis 2024, 72. doi:10.2478/aite-2024-0007
- Venkatesan, J.; Anil, S. Nanomaterials for Osteogenic Differentiation of Mesenchymal Stem Cells for Bone Tissue Engineering. Comprehensive Hematology and Stem Cell Research; Elsevier, 2024; pp 394–406. doi:10.1016/b978-0-443-15717-2.00085-8
- Alshamsi, M. A. H.; Mosa, K. A.; Khan, A. A.; Mousa, M.; Ali, M. A.; Soliman, S. S. M.; Semreen, M. H. Biosynthesized Silver Nanoparticles from Cyperus conglomeratus Root Extract Inhibit Osteogenic Differentiation of Immortalized Mesenchymal Stromal Cells. Current pharmaceutical biotechnology 2024, 25, 1333–1347. doi:10.2174/1389201024666230823094412
- Gao, H.; Jiang, N.; Niu, Q.; Mei, S.; Haugen, H. J.; Ma, Q. Biocompatible Nanostructured Silver-Incorporated Implant Surfaces Show Effective Antibacterial, Osteogenic, and Anti-Inflammatory Effects in vitro and in Rat Model. International journal of nanomedicine 2023, 18, 7359–7378. doi:10.2147/ijn.s435415
- Xiong, J.; Zhang, L.; Yu, L.; Dai, J.; Lv, Q. Using laser etched-array periodic structure surface to construct silver loaded titanium implants with combined efficient antibacterial and osteogenic properties. Applied Surface Science 2023, 641, 158533. doi:10.1016/j.apsusc.2023.158533
- Garmendia Urdalleta, A.; Van Poll, M.; Fahy, N.; Witte-Bouma, J.; Van Wamel, W.; Apachitei, I.; Zadpoor, A. A.; Fratila-Apachitei, L. E.; Farrell, E. The response of human macrophages to 3D printed titanium antibacterial implants does not affect the osteogenic differentiation of hMSCs. Frontiers in bioengineering and biotechnology 2023, 11, 1176534. doi:10.3389/fbioe.2023.1176534
- Cecotto, L.; Stapels, D. A. C.; van Kessel, K. P. M.; Croes, M.; Lourens, Z.; Vogely, H. C.; van der Wal, B. C. H.; van Strijp, J. A. G.; Weinans, H.; Amin Yavari, S. Evaluation of silver bio-functionality in a multicellular in vitro model: towards reduced animal usage in implant-associated infection research. Frontiers in cellular and infection microbiology 2023, 13, 1186936. doi:10.3389/fcimb.2023.1186936
- Sang, P.; Li, X.; Wang, Z. Silver Nanoparticles Promote the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells by Modulating the O-GlcNAcylation of RUNX1. Journal of Biomedical Nanotechnology 2023, 19, 718–726. doi:10.1166/jbn.2023.3656
- Demirel, M.; Aslan, N.; Aksakal, B.; Arslan, M. E. Fabrication of hydroxyapatite-based nano-gold and nano-silver-doped bioceramic bone grafts: Enhanced mechanostructure, cell viability, and nuclear abnormality properties. Journal of biomedical materials research. Part B, Applied biomaterials 2023, 111, 1386–1397. doi:10.1002/jbm.b.35242
- Rossner, P.; Cervena, T.; Echalar, B.; Palacka, K.; Milcova, A.; Novakova, Z.; Sima, M.; Simova, Z.; Vankova, J.; Holan, V. Metal Nanoparticles with Antimicrobial Properties: The Toxicity Response in Mouse Mesenchymal Stem Cells. Toxics 2023, 11, 253. doi:10.3390/toxics11030253
- Holan, V.; Cervena, T.; Zajicova, A.; Hermankova, B.; Echalar, B.; Palacka, K.; Rossner, P.; Javorkova, E. The Impact of Metal Nanoparticles on the Immunoregulatory and Therapeutic Properties of Mesenchymal Stem Cells. Stem cell reviews and reports 2023, 19, 1360–1369. doi:10.1007/s12015-022-10500-2
- Sun, L.; Chen, X.; Chen, R.; Ji, Z.; Mu, H.; Liu, C.; Yu, J.; Wang, J.; Xia, R.; Zhang, S.; Xu, Y.; Ma, K.; Xia, L. Balancing the antibacterial and osteogenic effects of double-layer TiO2 nanotubes loaded with silver nanoparticles for the osseointegration of implants. Nanoscale 2023, 15, 2911–2923. doi:10.1039/d2nr06154f
- Chakraborty, U.; Bhanjana, G.; Kaur, N.; Kaur, G.; Kaushik, A. K.; Kumar, S.; Chaudhary, G. R. Design and testing of nanobiomaterials for orthopedic implants. Engineered Nanostructures for Therapeutics and Biomedical Applications; Elsevier, 2023; pp 227–271. doi:10.1016/b978-0-12-821240-0.00007-x
Patents
- GAHARWAR AKHILESH; KERSEY ANNA; SINGH IRTISHA. INORGANIC IONS AND BIOMATERIALS TO DRIVE STEM CELL DIFFERENTIATION. WO 2025128969 A1, June 19, 2025.