Atomic layer deposition, a unique method for the preparation of energy conversion devices

Julien Bachmann
Beilstein J. Nanotechnol. 2014, 5, 245–248. https://doi.org/10.3762/bjnano.5.26

Cite the Following Article

Atomic layer deposition, a unique method for the preparation of energy conversion devices
Julien Bachmann
Beilstein J. Nanotechnol. 2014, 5, 245–248. https://doi.org/10.3762/bjnano.5.26

How to Cite

Bachmann, J. Beilstein J. Nanotechnol. 2014, 5, 245–248. doi:10.3762/bjnano.5.26

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Laube, A.; Hofer, A.; Sánchez Batalla, B.; Ressel, S.; Chica, A.; Fischer, S.; Weidlich, C.; Bachmann, J.; Struckmann, T. Tubular membrane electrode assembly for PEM electrolysis. International Journal of Hydrogen Energy 2022, 47, 15943–15951. doi:10.1016/j.ijhydene.2022.03.135
  • Laube, A.; Hofer, A.; Ressel, S.; Chica, A.; Bachmann, J.; Struckmann, T. PEM water electrolysis cells with catalyst coating by atomic layer deposition. International Journal of Hydrogen Energy 2021, 46, 38972–38982. doi:10.1016/j.ijhydene.2021.09.153
  • Cao, Y.; Wähler, T.; Park, H.; Will, J.; Prihoda, A.; Badlyan, N. M.; Fromm, L.; Yokosawa, T.; Wang, B.; Guldi, D. M.; Görling, A.; Maultzsch, J.; Unruh, T.; Spiecker, E.; Halik, M.; Libuda, J.; Bachmann, J. Area-Selective Growth of HfS2 Thin Films via Atomic Layer Deposition at Low Temperature. Advanced Materials Interfaces 2020, 7, 2001493. doi:10.1002/admi.202001493
  • Schlicht, S.; Percin, K.; Kriescher, S.; Hofer, A.; Weidlich, C.; Wessling, M.; Bachmann, J. Atomic layer deposition for efficient oxygen evolution reaction at Pt/Ir catalyst layers. Beilstein journal of nanotechnology 2020, 11, 952–959. doi:10.3762/bjnano.11.79
  • Ji, S.; Tanveer, W. H. Thickness determination of porous Pt cathode thin film capped by atomic layer-deposited alumina for low-temperature solid oxide fuel cells. Applied Surface Science 2020, 514, 145931. doi:10.1016/j.apsusc.2020.145931
  • Cao, Y.; Wu, Y.; Badie, C.; Cadot, S.; Camp, C.; Quadrelli, E. A.; Bachmann, J. Electrocatalytic Performance of Titania Nanotube Arrays Coated with MoS2 by ALD toward the Hydrogen Evolution Reaction. ACS omega 2019, 4, 8816–8823. doi:10.1021/acsomega.9b00322
  • Wu, Y.; Raza, M. H.; Chen, Y.-C.; Amsalem, P.; Wahl, S.; Skrodczky, K.; Xu, X.; Lokare, K. S.; Zhukush, M.; Gaval, P.; Koch, N.; Quadrelli, E. A.; Pinna, N. A Self-Limited Atomic Layer Deposition of WS2 Based on the Chemisorption and Reduction of Bis(t-butylimino)bis(dimethylamino) Complexes. Chemistry of Materials 2019, 31, 1881–1890. doi:10.1021/acs.chemmater.8b03921
  • Lien, C.; Sun, H.; Qin, X.; Zaera, F. Platinum atomic layer deposition on metal substrates: A surface chemistry study. Surface Science 2018, 677, 161–166. doi:10.1016/j.susc.2018.07.002
  • Schlicht, S.; Barr, M. K. S.; Wu, M.; Hoppe, P.; Spiecker, E.; Peukert, W.; Bachmann, J. Minimization of Catalyst Loading on Regenerative Fuel Cell Positive Electrodes Based on Titanium Felts using Atomic Layer Deposition. ChemElectroChem 2018, 5, 3932–3937. doi:10.1002/celc.201801220
  • Henkel, K.; Kot, M.; Richter, M. H.; Tallarida, M.; Schmeißer, D. An (In Situ) 2 Approach: ALD and resPES Applied to Al 2 O 3 , HfO 2 , and TiO 2 Ultrathin Films. Encyclopedia of Interfacial Chemistry; Elsevier, 2018; pp 18–26. doi:10.1016/b978-0-12-409547-2.13852-1
  • Fichtner, J.; Wu, Y.; Hitzenberger, J.; Drewello, T.; Bachmann, J. Molecular Layer Deposition from Dissolved Precursors. ECS Journal of Solid State Science and Technology 2017, 6, N171–N175. doi:10.1149/2.0291709jss
  • Kot, M.; Henkel, K.; Das, C.; Brizzi, S.; Kärkkänen, I.; Schneidewind, J.; Naumann, F.; Gargouri, H.; Schmeißer, D. Analysis of titanium species in titanium oxynitride films prepared by plasma enhanced atomic layer deposition. Surface and Coatings Technology 2017, 324, 586–593. doi:10.1016/j.surfcoat.2016.11.094
  • Abel, A.; Wu, Y.; Bachmann, J. Stimulus-Responsive Nanoporous System Based on a Redox-Active Molecular Self-Assembled Monolayer. Langmuir : the ACS journal of surfaces and colloids 2017, 33, 8289–8294. doi:10.1021/acs.langmuir.7b01918
  • Ji, S.; Ha, J.; Park, T.; Kim, Y.; Koo, B.; Kim, Y. B.; An, J.; Won, S. Substrate-dependent growth of nanothin film solid oxide fuel cells toward cost-effective nanostructuring. International Journal of Precision Engineering and Manufacturing-Green Technology 2016, 3, 35–39. doi:10.1007/s40684-016-0005-7
  • Schlicht, S.; Assaud, L.; Hansen, M.; Licklederer, M.; Bechelany, M.; Perner, M.; Bachmann, J. An electrochemically functional layer of hydrogenase extract on an electrode of large and tunable specific surface area. Journal of Materials Chemistry A 2016, 4, 6487–6494. doi:10.1039/c6ta00392c
  • Barr, M. K. S.; Assaud, L.; Wu, Y.; Laffon, C.; Parent, P.; Bachmann, J.; Santinacci, L. Engineering a three-dimensional, photoelectrochemically active p-NiO/i-Sb2S3 junction by atomic layer deposition. Electrochimica Acta 2015, 179, 504–511. doi:10.1016/j.electacta.2015.07.016
  • Wu, Y.; Döhler, D.; Barr, M. K. S.; Oks, E.; Wolf, M.; Santinacci, L.; Bachmann, J. Atomic Layer Deposition from Dissolved Precursors. Nano letters 2015, 15, 6379–6385. doi:10.1021/acs.nanolett.5b01424
  • Wu, Y.; Assaud, L.; Kryschi, C.; Capon, B.; Detavernier, C.; Santinacci, L.; Bachmann, J. Antimony sulfide as a light absorber in highly ordered, coaxial nanocylindrical arrays: preparation and integration into a photovoltaic device. Journal of Materials Chemistry A 2015, 3, 5971–5981. doi:10.1039/c5ta00111k
  • Das, C.; Henkel, K.; Tallarida, M.; Schmeißer, D.; Gargouri, H.; Kärkkänen, I.; Schneidewind, J.; Gruska, B.; Arens, M. Thermal and plasma enhanced atomic layer deposition of TiO2: Comparison of spectroscopic and electric properties. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2014, 33. doi:10.1116/1.4903938
Other Beilstein-Institut Open Science Activities