Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies

Gheorghe Stan and Santiago D. Solares
Beilstein J. Nanotechnol. 2014, 5, 278–288. https://doi.org/10.3762/bjnano.5.30

Cite the Following Article

Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies
Gheorghe Stan and Santiago D. Solares
Beilstein J. Nanotechnol. 2014, 5, 278–288. https://doi.org/10.3762/bjnano.5.30

How to Cite

Stan, G.; Solares, S. D. Beilstein J. Nanotechnol. 2014, 5, 278–288. doi:10.3762/bjnano.5.30

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Medrano, J. G.; Raboño-Borbolla, J.; Cortazar-Martínez, O.; Herrera-Gómez, A.; Flores-Ruiz, F. J. Nanomechanical properties of Nb films deposited by pulsed frequency magnetron sputtering. Journal of Materials Science 2023, 58, 14556–14569. doi:10.1007/s10853-023-08928-z
  • Bilkey, N.; Li, H.; Borodinov, N.; Ievlev, A. V.; Ovchinnikova, O. S.; Dixit, R.; Foston, M. Correlated mechanochemical maps of Arabidopsis thaliana primary cell walls using atomic force microscope infrared spectroscopy. Quantitative plant biology 2022, 3, e31. doi:10.1017/qpb.2022.20
  • Pasha, A. H. G.; Sadeghi, A. A. A new insight into the vibrational modeling of contact mode for atomic force microscope beams in various immersion ambiances. Microscopy research and technique 2020, 84, 771–781. doi:10.1002/jemt.23635
  • Zheng, Z.; Pan, Y.; Pei, T.; Xu, R.; Xu, K.; Lei, L.; Hussain, S.; Liu, X.-J.; Bao, L.; Gao, H.-J.; Ji, W.; Cheng, Z. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy. Frontiers of Physics 2020, 15, 63505. doi:10.1007/s11467-020-0994-0
  • Piras, D.; van Neer, P. L. M. J.; Rutger, M. T. T.; Sadeghian, H. On the resolution of subsurface atomic force microscopy and its implications for subsurface feature sizing. The Review of scientific instruments 2020, 91, 083702. doi:10.1063/1.5140427
  • Garcia, R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chemical Society reviews 2020, 49, 5850–5884. doi:10.1039/d0cs00318b
  • Liu, Y.; Sun, Y.; Lu, W.; Wang, H.; Wang, Z.; Yu, B.; Li, T.; Zeng, K. Variation of Contact Resonance Frequency during Domain Switching in PFM Measurements for Ferroelectric Materials. Journal of Materiomics 2020, 6, 109–118. doi:10.1016/j.jmat.2019.12.011
  • Frogley, M. D.; Lekkas, I.; Kelley, C. S.; Cinque, G. Performances for broadband synchrotron photothermal infrared nano-spectroscopy at Diamond Light Source. Infrared Physics & Technology 2020, 105, 103238. doi:10.1016/j.infrared.2020.103238
  • Bidhendi, A. J.; Geitmann, A. Methods to quantify primary plant cell wall mechanics. Journal of experimental botany 2019, 70, 3615–3648. doi:10.1093/jxb/erz281
  • Liu, Y.; Sun, Y.; Lu, W.; Wang, H.; Wang, Z.; Yu, B.; Li, T.; Zeng, K. Variation of Contact Resonance Frequency during Domain Switching in PFM Measurements for Ferroelectric Materials. 2018.
  • Bertke, M.; Fahrbach, M.; Hamdana, G.; Xu, J.; Wasisto, H. S.; Peiner, E. Contact resonance spectroscopy for on-the-machine manufactory monitoring. Sensors and Actuators A: Physical 2018, 279, 501–508. doi:10.1016/j.sna.2018.06.012
  • Sokolov, I. M.; Dokukin, M. Imaging of Soft and Biological Samples Using AFM Ringing Mode. Methods in molecular biology (Clifton, N.J.) 2018, 1814, 469–482. doi:10.1007/978-1-4939-8591-3_28
  • Bradler, S.; Schirmeisen, A.; Roling, B. Piezoresponse force and electrochemical strain microscopy in dual AC resonance tracking mode: Analysis of tracking errors. Journal of Applied Physics 2018, 123, 035106. doi:10.1063/1.5004472
  • Bertke, M.; Fahrbach, M.; Hamdana, G.; Wasisto, H. S.; Peiner, E. Large area contact resonance spectroscopy mapping system for on-the-machine measurements. In 2018 IEEE Micro Electro Mechanical Systems (MEMS), IEEE, 2018. doi:10.1109/memsys.2018.8346701
  • van Es, M. H.; Mohtashami, A.; Rutger, M. T. T.; Piras, D.; van Neer, P. L. M. J.; Sadeghian, H. Mapping buried nanostructures using subsurface ultrasonic resonance force microscopy. Ultramicroscopy 2017, 184, 209–216. doi:10.1016/j.ultramic.2017.09.005
  • Sharahi, H. J.; Shekhawat, G. S.; Dravid, V. P.; Park, S. S.; Egberts, P.; Kim, S. H. Contrast mechanisms on nanoscale subsurface imaging in ultrasonic AFM: scattering of ultrasonic waves and contact stiffness of the tip-sample. Nanoscale 2017, 9, 2330–2339. doi:10.1039/c6nr09124e
  • Soliman, M.; Ding, Y.; Tetard, L. Nanoscale subsurface imaging. Journal of physics. Condensed matter : an Institute of Physics journal 2017, 29, 173001. doi:10.1088/1361-648x/aa5b4a
  • Meier, T.; Eslami, B.; Solares, S. D. Multifrequency force microscopy using flexural and torsional modes by photothermal excitation in liquid: atomic resolution imaging of calcite (1014). Nanotechnology 2016, 27, 085702. doi:10.1088/0957-4484/27/8/085702
  • Shi, J.; Liu, L.; Yu, P.; Li, P. IROS - Real-time detecting and tracking nanoscale feeble vibrations based SF-AM AFM. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2015; pp 1976–1981. doi:10.1109/iros.2015.7353637
  • Kilpatrick, J. I.; Revenko, I.; Rodriguez, B. J. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy. Advanced healthcare materials 2015, 4, 2456–2474. doi:10.1002/adhm.201500229

Patents

  • LIU LIANQING; SHI JIALIN; YU PENG; LI GUANGYONG. Ultrasonic AFM closed-loop nanometer processing device and method based on phase feedback. CN 107188116 A, Sept 22, 2017.
Other Beilstein-Institut Open Science Activities