Calibration of quartz tuning fork spring constants for non-contact atomic force microscopy: direct mechanical measurements and simulations

Jens Falter, Marvin Stiefermann, Gernot Langewisch, Philipp Schurig, Hendrik Hölscher, Harald Fuchs and André Schirmeisen
Beilstein J. Nanotechnol. 2014, 5, 507–516. https://doi.org/10.3762/bjnano.5.59

Cite the Following Article

Calibration of quartz tuning fork spring constants for non-contact atomic force microscopy: direct mechanical measurements and simulations
Jens Falter, Marvin Stiefermann, Gernot Langewisch, Philipp Schurig, Hendrik Hölscher, Harald Fuchs and André Schirmeisen
Beilstein J. Nanotechnol. 2014, 5, 507–516. https://doi.org/10.3762/bjnano.5.59

How to Cite

Falter, J.; Stiefermann, M.; Langewisch, G.; Schurig, P.; Hölscher, H.; Fuchs, H.; Schirmeisen, A. Beilstein J. Nanotechnol. 2014, 5, 507–516. doi:10.3762/bjnano.5.59

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Rahe, P.; Heile, D.; Olbrich, R.; Reichling, M. Quantitative dynamic force microscopy with inclined tip oscillation. Beilstein journal of nanotechnology 2022, 13, 610–619. doi:10.3762/bjnano.13.53
  • Weymouth, A. J.; Gretz, O.; Riegel, E.; Giessibl, F. J. Measuring sliding friction at the atomic scale. Japanese Journal of Applied Physics 2022, 61, SL0801. doi:10.35848/1347-4065/ac5e4a
  • Çiftçi, H. T.; Verhage, M.; Cromwijk, T.; Pham Van, L.; Koopmans, B.; Flipse, K.; Kurnosikov, O. Enhancing sensitivity in atomic force microscopy for planar tip-on-chip probes. Microsystems & nanoengineering 2022, 8, 51. doi:10.1038/s41378-022-00379-x
  • Mucientes, M. Ph.D. Thesis, Jan 19, 2021.
  • Pürckhauer, K.; Maier, S.; Merkel, A.; Kirpal, D.; Giessibl, F. J. Combined atomic force microscope and scanning tunneling microscope with high optical access achieving atomic resolution in ambient conditions. The Review of scientific instruments 2020, 91, 083701. doi:10.1063/5.0013921
  • Akhtar, I.; Rehman, M. A.; Choi, W.; Bae, J.; Seo, Y. Quartz tuning fork based three-dimensional topography imaging for sidewall with blind features. Ultramicroscopy 2019, 210, 112916. doi:10.1016/j.ultramic.2019.112916
  • Chang, C.-O.; Chang-Chien, W.-T.; Song, J.-P.; Zhou, C.; Huang, B.-S. Analysis of the Frequency Shift versus Force Gradient of a Dynamic AFM Quartz Tuning Fork Subject to Lennard-Jones Potential Force. Sensors (Basel, Switzerland) 2019, 19, 1948. doi:10.3390/s19081948
  • Dagdeviren, O. E.; Miyahara, Y.; Mascaro, A.; Grutter, P. Calibration of the oscillation amplitude of electrically excited scanning probe microscopy sensors. The Review of scientific instruments 2019, 90, 013703. doi:10.1063/1.5061831
  • Dagdeviren, O. E.; Miyahara, Y.; Mascaro, A.; Enright, T.; Grutter, P. Amplitude dependence of resonance frequency and its consequences for scanning probe microscopy. 2018.
  • Chen, L.; Yu, F.; Xiang, Z.; Asaba, T.; Tinsman, C.; Lawson, B.; Sass, P. M.; Wu, W.; Kang, B. L.; Chen, X.; Li, L. Torque Differential Magnetometry Using the qPlus Mode of a Quartz Tuning Fork. Physical Review Applied 2018, 9, 024005. doi:10.1103/physrevapplied.9.024005
  • Dagdeviren, O. E.; Schwarz, U. D. Optimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis. Beilstein journal of nanotechnology 2017, 8, 657–666. doi:10.3762/bjnano.8.70
  • Dagdeviren, O. E.; Schwarz, U. D. Numerical performance analysis of quartz tuning fork-based force sensors. Measurement Science and Technology 2016, 28, 015102. doi:10.1088/1361-6501/28/1/015102
  • Göring, G.; Dietrich, P.-I.; Blaicher, M.; Sharma, S.; Korvink, J. G.; Schimmel, T.; Koos, C.; Hölscher, H. Tailored probes for atomic force microscopy fabricated by two-photon polymerization. Applied Physics Letters 2016, 109, 063101. doi:10.1063/1.4960386
  • Ladenthin, J. N.; Frederiksen, T.; Persson, M.; Sharp, J. C.; Gawinkowski, S.; Waluk, J.; Kumagai, T. Force-induced tautomerization in a single molecule. Nature chemistry 2016, 8, 935–940. doi:10.1038/nchem.2552
  • Cinar, E.; Sahin, F.; Yablon, D. Development of a novel nanoindentation technique by utilizing a dual-probe AFM system. Beilstein journal of nanotechnology 2015, 6, 2015–2027. doi:10.3762/bjnano.6.205
  • Melcher, J.; Stirling, J.; Shaw, G. A. A simple method for the determination of qPlus sensor spring constants. Beilstein journal of nanotechnology 2015, 6, 1733–1742. doi:10.3762/bjnano.6.177
  • Labidi, H.; Kupsta, M.; Huff, T.; Salomons, M.; Vick, D.; Taucer, M.; Pitters, J. L.; Wolkow, R. A. New fabrication technique for highly sensitive qPlus sensor with well-defined spring constant. Ultramicroscopy 2015, 158, 33–37. doi:10.1016/j.ultramic.2015.06.008
  • Melcher, J.; Stirling, J.; Cervantes, F. G.; Pratt, J. R.; Shaw, G. A. A self-calibrating optomechanical force sensor with femtonewton resolution. Applied Physics Letters 2014, 105, 233109. doi:10.1063/1.4903801
Other Beilstein-Institut Open Science Activities