Quantum size effects in TiO2 thin films grown by atomic layer deposition

Massimo Tallarida, Chittaranjan Das and Dieter Schmeisser
Beilstein J. Nanotechnol. 2014, 5, 77–82. https://doi.org/10.3762/bjnano.5.7

Cite the Following Article

Quantum size effects in TiO2 thin films grown by atomic layer deposition
Massimo Tallarida, Chittaranjan Das and Dieter Schmeisser
Beilstein J. Nanotechnol. 2014, 5, 77–82. https://doi.org/10.3762/bjnano.5.7

How to Cite

Tallarida, M.; Das, C.; Schmeisser, D. Beilstein J. Nanotechnol. 2014, 5, 77–82. doi:10.3762/bjnano.5.7

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Riyanto, E.; Martides, E.; Pikra, G.; Atmaja, T. D.; Pramana, R. I.; Purwanto, A. J.; Santosa, A.; Junianto, E.; Darussalam, R.; Saepudin, A.; Susatyo, A.; Subekti, R. A.; Utomo, Y. S.; Subagio, D. G.; Fudholi, A.; Abimanyu, H.; Radiansah, Y.; Sudibyo, H.; Kusnadi; Rajani, A.; Suprapto; Prawara, B. A Review of Atomic Layer Deposition for High Lithium-Ion Battery Performance. Journal of Materials Research and Technology 2021, 15, 5466–5481. doi:10.1016/j.jmrt.2021.10.138
  • Palanisamy, V. K.; Manoharan, K.; Raman, K.; Sundaram, R. Efficient sunlight-driven photocatalytic behavior of zinc sulfide nanorods towards Rose Bengal degradation. Journal of Materials Science: Materials in Electronics 2020, 31, 14795–14809. doi:10.1007/s10854-020-04043-w
  • Liang, J.; Chen, D.; Yao, X.; Zhang, K.; Qu, F.; Qin, L.; Huang, Y.; Li, J. Recent Progress and Development in Inorganic Halide Perovskite Quantum Dots for Photoelectrochemical Applications. Small (Weinheim an der Bergstrasse, Germany) 2019, 16, 1903398. doi:10.1002/smll.201903398
  • Gupta, M.; Pandey, N.; Reddy, V. R.; Phase, D. M.; Schlage, K.; Wille, H.-C.; Gupta, A. In-situ growth of iron mononitride thin films studied using x-ray absorption spectroscopy and nuclear resonant scattering. Hyperfine Interactions 2019, 240, 1–17. doi:10.1007/s10751-019-1633-4
  • Niemelä, J.-P.; Marín, G.; Karppinen, M. Titanium dioxide thin films by atomic layer deposition: a review. Semiconductor Science and Technology 2017, 32, 093005. doi:10.1088/1361-6641/aa78ce
  • Fuentes, K. M.; Betancourt, P.; Marrero, S.; García, S. Photocatalytic degradation of phenol using doped titania supported on photonic SiO2 spheres. Reaction Kinetics, Mechanisms and Catalysis 2016, 120, 403–415. doi:10.1007/s11144-016-1097-3
  • Sowinska, M.; Brizzi, S.; Das, C.; Kärkkänen, I.; Schneidewind, J.; Naumann, F.; Gargouri, H.; Henkel, K.; Schmeißer, D. Analysis of nitrogen species in titanium oxynitride ALD films. Applied Surface Science 2016, 381, 42–47. doi:10.1016/j.apsusc.2016.02.096
  • Chu, M. H.; Tian, L.; Chaker, A.; Cantelli, V.; Ouled, T.; Boichot, R.; Crisci, A.; Lay, S.; Richard, M.-I.; Thomas, O.; Deschanvres, J.-L.; Renevier, H.; Fong, D. D.; Ciatto, G. An Atomistic View of the Incipient Growth of Zinc Oxide Nanolayers. Crystal Growth & Design 2016, 16, 5339–5348. doi:10.1021/acs.cgd.6b00844
  • Shen, T.; Tian, J.; Li, B.; Cao, G. Ultrathin ALD coating on TiO2 photoanodes with enhanced quantum dot loading and charge collection in quantum dots sensitized solar cells. Science China Materials 2016, 59, 833–841. doi:10.1007/s40843-016-5066-y
  • Sowinska, M.; Henkel, K.; Schmeißer, D.; Kärkkänen, I.; Schneidewind, J.; Naumann, F.; Gruska, B.; Gargouri, H. Plasma-enhanced atomic layer deposition of titanium oxynitrides films: A comparative spectroscopic and electrical study. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2015, 34. doi:10.1116/1.4936227
  • Dong, J.; Xu, X.; Shi, J.; Li, D.; Luo, Y.; Meng, Q.; Chen, Q. Suppressing Charge Recombination in ZnO-Nanorod-Based Perovskite Solar Cells with Atomic-Layer-Deposition TiO 2. Chinese Physics Letters 2015, 32, 078401. doi:10.1088/0256-307x/32/7/078401
  • O'Neill, B. J.; Jackson, D. H. K.; Lee, J.; Canlas, C. P.; Stair, P. C.; Marshall, C. L.; Elam, J. W.; Kuech, T. F.; Dumesic, J. A.; Huber, G. W. Catalyst Design with Atomic Layer Deposition. ACS Catalysis 2015, 5, 1804–1825. doi:10.1021/cs501862h
  • Das, C.; Henkel, K.; Tallarida, M.; Schmeißer, D.; Gargouri, H.; Kärkkänen, I.; Schneidewind, J.; Gruska, B.; Arens, M. Thermal and plasma enhanced atomic layer deposition of TiO2: Comparison of spectroscopic and electric properties. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2014, 33. doi:10.1116/1.4903938
  • Saleem, M.; Ali, R.; Khan, M. B.; Honkanen, S.; Turunen, J. Impact of atomic layer deposition to nanophotonic structures and devices. Frontiers in Materials 2014, 1, 18. doi:10.3389/fmats.2014.00018
  • Bachmann, J. Atomic layer deposition, a unique method for the preparation of energy conversion devices. Beilstein journal of nanotechnology 2014, 5, 245–248. doi:10.3762/bjnano.5.26
Other Beilstein-Institut Open Science Activities