Enhancement of photocatalytic H2 evolution of eosin Y-sensitized reduced graphene oxide through a simple photoreaction

Weiying Zhang, Yuexiang Li, Shaoqin Peng and Xiang Cai
Beilstein J. Nanotechnol. 2014, 5, 801–811. https://doi.org/10.3762/bjnano.5.92

Cite the Following Article

Enhancement of photocatalytic H2 evolution of eosin Y-sensitized reduced graphene oxide through a simple photoreaction
Weiying Zhang, Yuexiang Li, Shaoqin Peng and Xiang Cai
Beilstein J. Nanotechnol. 2014, 5, 801–811. https://doi.org/10.3762/bjnano.5.92

How to Cite

Zhang, W.; Li, Y.; Peng, S.; Cai, X. Beilstein J. Nanotechnol. 2014, 5, 801–811. doi:10.3762/bjnano.5.92

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zheng, Q.; Mao, T.; Fang, Y.; Niu, Y.; Ji, B.; Gong, X.; Wang, P.; Zhao, J.; Yang, H.; Luo, D.; Hu, L.; Zhu, Y.; Wang, Z. Pythium oligandrum-derived carbon/graphene oxide as sensitized substrate: large-scale preparation and enhancing photocatalytic hydrogen evolution. Biomass Conversion and Biorefinery 2023. doi:10.1007/s13399-023-03964-w
  • Zhang, W.; Li, Z.; Li, H.; Li, W.; Peng, S.; Li, Y. Facile Synthesis of Amorphous NiO/Reduced Graphene Oxide as a Cocatalyst for Enhanced Dye-Sensitized Photocatalytic H2 Evolution. Energy & Fuels 2022, 36, 15112–15119. doi:10.1021/acs.energyfuels.2c03256
  • Zhang, X.; Luo, D.; Li, S.; Sun, H.; He, Q.; He, M.; Li, Y. Boron-doping nanoarchitectonics on three-dimensional carbon nanosheets with exaltation of hydrophilicity and conductivity for enhancing photocatalytic hydrogen evolution. Journal of Alloys and Compounds 2022, 924, 166341. doi:10.1016/j.jallcom.2022.166341
  • Li, Y.; Tong, R.; Zhang, W.; Peng, S. Pre-intercalation of phosphate into Ni(OH)2/NiOOH for efficient and stable electrocatalytic oxygen evolution reaction. Journal of Catalysis 2022, 410, 22–30. doi:10.1016/j.jcat.2022.03.028
  • Gao, X.; Wang, J.; Xue, Q.; Ma, Y.-Y.; Gao, Y. AgBr/Polyoxometalate/Graphene Oxide Ternary Composites for Visible Light-Driven Photocatalytic Hydrogen Production. ACS Applied Nano Materials 2021, 4, 2126–2135. doi:10.1021/acsanm.0c03406
  • Yao, X.; Hu, X.; Yingying, C.; Huang, J.; Zhang, W.; Wang, X.; Wang, D. Effect of Mie resonance on photocatalytic hydrogen evolution over dye-sensitized hollow C-TiO2 nanoshells under visible light irradiation. Chinese Chemical Letters 2021, 32, 750–754. doi:10.1016/j.cclet.2020.05.013
  • Shen, C.; Oyadiji, S. O. The Processing and Analysis of Graphene and the Strength Enhancement Effect of Graphene-based Filler Materials: A Review. Materials Today Physics 2020, 15, 100257. doi:10.1016/j.mtphys.2020.100257
  • Phrompet, C.; Maneesai, K.; Tuichai, W.; Karaphun, A.; Sriwong, C.; Ruttanapun, C. Electrochemical properties of tricalcium aluminate hexahydrate − reduced graphene oxide nanocomposites for supercapacitor device. Journal of Energy Storage 2020, 30, 101474. doi:10.1016/j.est.2020.101474
  • Phrompet, C.; Sriwong, C.; Ruttanapun, C. Mechanical, dielectric, thermal and antibacterial properties of reduced graphene oxide (rGO)-nanosized C3AH6 cement nanocomposites for smart cement-based materials. Composites Part B: Engineering 2019, 175, 107128. doi:10.1016/j.compositesb.2019.107128
  • Peng, S.; Cao, Y.; Zhou, F.; Xu, Z.; Li, Y. CoP decorated with Co3O4 as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization. Applied Surface Science 2019, 487, 315–321. doi:10.1016/j.apsusc.2019.05.113
  • Zhang, W.; Li, W.; Li, Y.; Peng, S.; Xu, Z. One-step synthesis of nickel oxide/nickel carbide/graphene composite for efficient dye-sensitized photocatalytic H2 evolution. Catalysis Today 2019, 335, 326–332. doi:10.1016/j.cattod.2018.12.016
  • Li, Y.; Jin, Z.; Liu, H.; Wang, H.; Zhang, Y.; Wang, G. Unique photocatalytic activities of transition metal phosphide for hydrogen evolution. Journal of colloid and interface science 2019, 541, 287–299. doi:10.1016/j.jcis.2019.01.101
  • Gupta, U.; Gopalakrishnan, K.; Rao, C. N. R. Synthesis and properties of graphene and its 2D inorganic analogues with potential applications. Bulletin of Materials Science 2018, 41, 1–16. doi:10.1007/s12034-018-1635-x
  • Wang, P.; Zong, L.; Guan, Z.; Li, Q.; Yang, J. PtNi Alloy Cocatalyst Modification of Eosin Y-Sensitized g-C3N4/GO Hybrid for Efficient Visible-Light Photocatalytic Hydrogen Evolution. Nanoscale research letters 2018, 13, 33. doi:10.1186/s11671-018-2448-y
  • Xie, T.; Chu, F.; Yan, W.; Xu, B.; Chen, J.; Zhao, R.; Zhang, Y.; Wang, P.; Lei, H. Synthesis and biological evaluation of new peroxo-bridged diosgenin derivatives. Chinese Herbal Medicines 2018, 10, 54–58. doi:10.1016/j.chmed.2017.12.007
  • Wang, P.; Guan, Z.; Li, Q.; Yang, J. Efficient visible-light-driven photocatalytic hydrogen production from water by using Eosin Y-sensitized novel g-C3N4/Pt/GO composites. Journal of Materials Science 2017, 53, 774–786. doi:10.1007/s10853-017-1540-5
  • Li, Y.; Hou, Y.; Fu, Q.; Peng, S.; Hu, Y. H. Oriented growth of ZnIn2S4/In(OH)3 heterojunction by a facile hydrothermal transformation for efficient photocatalytic H2 production. Applied Catalysis B: Environmental 2017, 206, 726–733. doi:10.1016/j.apcatb.2017.01.062
  • Ghasemi, S.; Hosseini, S. R.; Mousavi, F. Electrophoretic deposition of graphene nanosheets: A suitable method for fabrication of silver-graphene counter electrode for dye-sensitized solar cell. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 520, 477–487. doi:10.1016/j.colsurfa.2017.02.004
  • Ponnamma, D.; P, P. V.; Al Ali Al-Maadeed, M. 3D architectures of titania nanotubes and graphene with efficient nanosynergy for supercapacitors. Materials & Design 2017, 117, 203–212. doi:10.1016/j.matdes.2016.12.090
  • Oxide Semiconductors (ZnO, TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, WO<sub>3</sub>, etc.) as Photocatalysts for Water Splitting. Electrochemical Energy Storage and Conversion; CRC Press, 2017; pp 161–222. doi:10.1201/9781315279657-6
Other Beilstein-Institut Open Science Activities