Cite the Following Article
From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries
Philipp Adelhelm, Pascal Hartmann, Conrad L. Bender, Martin Busche, Christine Eufinger and Juergen Janek
Beilstein J. Nanotechnol. 2015, 6, 1016–1055.
https://doi.org/10.3762/bjnano.6.105
How to Cite
Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J. Beilstein J. Nanotechnol. 2015, 6, 1016–1055. doi:10.3762/bjnano.6.105
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Yu, D.; Cui, Y.; Chen, Q.; Gao, L.; Liu, X.; Li, T.; Zhu, W.; Li, Q.; Kang, W. Reaction Mechanism, Challenges, and Strategies of High‐Energy‐Density Sodium‐Ion Batteries. Advanced Science 2026. doi:10.1002/advs.202519427
- Yadav, D.; Sharma, Y. Unlocking the Future of Room Temperature Sodium-Sulfur Batteries: Cathode Innovations, Challenges, and Future Prospects. Small (Weinheim an der Bergstrasse, Germany) 2025, e10392. doi:10.1002/smll.202510392
- Khakimov, F. S.; Khakimova, S. S. k.; Mirsalimova, S. R.; Khamrakulov, Z. A.; Khamdamova, S. S.; Maksumova, O. S. Cathode material derived from oil and gas processing wastewater and electrolyte development for use in room temperature sodium-sulfur batteries. Journal of Energy Storage 2025, 140, 118593. doi:10.1016/j.est.2025.118593
- Pandey, A. K.; Jhang, L.; Wang, D.; Li, X.; Wang, D. Development of Materials for All Solid‐State Sodium‐Sulfur Batteries: Review and Prospects. Advanced Energy Materials 2025. doi:10.1002/aenm.202505400
- Noh, H.; Qing, H.; Wang, P.; Li, W.; Mirica, K. A. Incorporating Redox‐Active Hexaazatrinaphthylene into a 2D Conductive Metal–Organic Framework for Robust Sodium‐Ion Batteries. Angewandte Chemie 2025, 138. doi:10.1002/ange.202516381
- Noh, H.-J.; Qing, H.; Wang, P.; Li, W.; Mirica, K. A. Incorporating Redox-Active Hexaazatrinaphthylene into a 2D Conductive Metal-Organic Framework for Robust Sodium-Ion Batteries. Angewandte Chemie (International ed. in English) 2025, 65, e16381. doi:10.1002/anie.202516381
- Bahaj, I.; Kumar M R, A.; Armand, M.; Zaghib, K. In memory of Bruno Scrosati: Metal salts for rechargeable Batteries: Past, present, and future. Journal of Power Sources 2025, 655, 237898. doi:10.1016/j.jpowsour.2025.237898
- Gu, W.; He, D.; Qin, Y.; Fu, C.; Lu, J.; Wang, T.; Wang, G.; Sun, B. From efficiency to sustainability: organic additives for interfacial regulation in lithium metal batteries. Chemical science 2025, 16, 18050–18091. doi:10.1039/d5sc03975d
- Zhu, T.; Hao, X.; Jiang, K.; Mao, Y.; Li, Y.; Wang, W.; Du, Y. Melon seed-like CF/Co9S8 composite for polysulfide shuttle inhibition in lithium-sulfur batteries. Chemical Engineering Science 2025, 316, 122025. doi:10.1016/j.ces.2025.122025
- Yang, B.; He, J.; Li, W.; Wang, Y.; Xu, P.; Feng, R.; Zhang, M. Functional Modification and Structural Design of Aramid Nanofiber Separators for Lithium–Sulfur Batteries. ACS Applied Nano Materials 2025, 8, 19310–19321. doi:10.1021/acsanm.5c03266
- Van Nghia, N.; Bien, T. T.; Long, N. T.; Dang, M. T. First-principles insights into sulfur and nitrogen co-doped Ti2CO2 MXene as an advanced anchoring material for sodium polysulfides in sodium-sulfur batteries. RSC advances 2025, 15, 35586–35597. doi:10.1039/d5ra05003k
- Xin, Y.; Zhang, H.; Wang, Y.; Wang, Q.; Zhou, Q.; Zhao, K.; Wu, F.; Gao, H. Unlocking Coupled of Electron/Ion Transport for Superior Electrochemical Performance in Hybrid Phosphate Cathodes of Sodium Ion Batteries. Advanced Functional Materials 2025. doi:10.1002/adfm.202518331
- Li, J.; Wang, Y.; Yang, Y.; Lei, P.; Cao, H.; Xiang, Y. Transition Metal-Based Catalysts Powering Practical Room-Temperature Na-S Batteries: From Advances to Further Perspectives. Batteries 2025, 11, 333. doi:10.3390/batteries11090333
- Zhang, X.; Tong, Y.; An, J.; Cheng, F.; Wu, Z.; Xue, Y.; Huang, Z.; Fang, Z.; Jiao, S. Foundations, Design Strategies, and Further Considerations for High-Energy Al-S Batteries. Electrochemical Energy Reviews 2025, 8. doi:10.1007/s41918-025-00251-2
- Voß, P.; Gruber, B.; Mitterfellner, M.; Plöpst, J.-D.; Degen, F.; Schmuch, R.; Lux, S. Benchmarking state-of-the-art sodium-ion battery cells – modeling energy density and carbon footprint at the gigafactory-scale. Energy & Environmental Science 2025, 18, 8104–8129. doi:10.1039/d5ee00415b
- Wei, M. Sulfurized Polyacrylonitrile for Rechargeable Batteries: A Comprehensive Review. Batteries 2025, 11, 290. doi:10.3390/batteries11080290
- Nagar, R. S.; Kanani, M.; Chaursia, S.; Mishra, K.; Kumar, D. Electrochemical investigations on PVDF-HFP-based sodium ion conducting gel polymer electrolyte added with copper particles. Ionics 2025, 31, 9029–9039. doi:10.1007/s11581-025-06508-6
- Massaro, A.; Squillantini, L.; Giorgio, F. D.; Scaramuzzo, F. A.; Pasquali, M.; Brutti, S. Solid-state sodium-based batteries: Advances, challenges, perspectives. Next Energy 2025, 8, 100357. doi:10.1016/j.nxener.2025.100357
- Bharti, V. K.; Goswami, A. P.; Khandelwal, M.; Sharma, C. S. Mechanistic Progress and Challenges for Carbon‐Based Protective Interlayer/Separator Modification for the Practical Development of Next‐Generation Alkali Metal–Sulfur Batteries. Batteries & Supercaps 2025, 8. doi:10.1002/batt.202500219
- Pugalendhi, K.; Natesan, B. Recent progress in tailoring transition metal cathodes for high-performance room temperature sodium–sulfur batteries. Tungsten 2025, 7, 424–455. doi:10.1007/s42864-025-00327-y
Patents
- LAINE RICHARD M; TEMECHE ELENI; ZHANG XINYU. Polymer precursors for solid state electrolytes. US 12327871 B2, June 10, 2025.