From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

Philipp Adelhelm, Pascal Hartmann, Conrad L. Bender, Martin Busche, Christine Eufinger and Juergen Janek
Beilstein J. Nanotechnol. 2015, 6, 1016–1055. https://doi.org/10.3762/bjnano.6.105

Cite the Following Article

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries
Philipp Adelhelm, Pascal Hartmann, Conrad L. Bender, Martin Busche, Christine Eufinger and Juergen Janek
Beilstein J. Nanotechnol. 2015, 6, 1016–1055. https://doi.org/10.3762/bjnano.6.105

How to Cite

Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J. Beilstein J. Nanotechnol. 2015, 6, 1016–1055. doi:10.3762/bjnano.6.105

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Basel, J.; Sapkota, N.; Parekh, M.; Rao, A. M. Electrolyte optimization for sodium-sulfur batteries. Applied Physics Letters 2024, 124. doi:10.1063/5.0193318
  • Xu, D.; Song, F.; Chen, Q. Vinasse-based hard carbon: Preparation and study on its compatibility with ester/ether-based electrolyte for sodium ion storage. Chemical Engineering Journal 2024, 150708. doi:10.1016/j.cej.2024.150708
  • Yang, P.; Xu, L.; Tao, Y.; Wang, W.; Wu, X.; Zhang, D. Ni2+-doped Na2Ti6O13 nanotubes to enhance the electrochemical performance of sodium ion batteries. Journal of Electroanalytical Chemistry 2024, 954, 118051. doi:10.1016/j.jelechem.2024.118051
  • Guo, Q.; Fan, P.; Zhang, Y.; Guan, L.; Wang, H.; Croft, A.; Chen, G. Z. Alkali and alkaline earth metals in liquid salts for supercapatteries. RSC Sustainability 2024, 2, 101–124. doi:10.1039/d3su00197k
  • Kitta, M.; Yoshii, K. Comparison of electrochemical lithium and sodium metal deposition: A surface plasmon resonance spectroscopy investigation. International Journal of Electrochemical Science 2024, 19, 100448. doi:10.1016/j.ijoes.2023.100448
  • Li, B.; Zou, Y.; Zhang, S.; Xiao, D.; Shang, C.; Wang, X.; Yan, M.; Hu, P. Off-stoichiometric Na V2(PO4)3 as cathode material for sodium-ion batteries. Electrochimica Acta 2024, 475, 143666. doi:10.1016/j.electacta.2023.143666
  • Zhang, Q.; Yang, T.; Li, Z. Mechanism and Kinetics of Na2Sx (x ≤ 2) Precipitation in Sodium-Sulfur and Sodium/(Oxygen)-Sulfur Batteries. Journal of The Electrochemical Society 2024, 171, 10503–010503. doi:10.1149/1945-7111/ad14cb
  • Ahmed, S.; Ansari, A.; Siddiqui, M. A.; Ranjan, P.; Kumar, P. Catalysts for Li-S batteries. Single Atom Catalysts; Elsevier, 2024; pp 215–231. doi:10.1016/b978-0-323-95237-8.00001-x
  • Lin, X.; Zhao, Y.; Wang, C.; Luo, J.; Fu, J.; Xiao, B.; Gao, Y.; Li, W.; Zhang, S.; Xu, J.; Yang, F.; Hao, X.; Duan, H.; Sun, Y.; Guo, J.; Huang, Y.; Sun, X. A Dual Anion Chemistry-Based Superionic Glass Enabling Long-Cycling All-Solid-State Sodium-Ion Batteries. Angewandte Chemie (International ed. in English) 2023, 63, e202314181. doi:10.1002/anie.202314181
  • Lin, X.; Zhao, Y.; Wang, C.; Luo, J.; Fu, J.; Xiao, B.; Gao, Y.; Li, W.; Zhang, S.; Xu, J.; Yang, F.; Hao, X.; Duan, H.; Sun, Y.; Guo, J.; Huang, Y.; Sun, X. A Dual Anion Chemistry‐Based Superionic Glass Enabling Long‐Cycling All‐Solid‐State Sodium‐Ion Batteries. Angewandte Chemie 2023, 136. doi:10.1002/ange.202314181
  • Stottmeister, D.; Wildersinn, L.; Maibach, J.; Hofmann, A.; Jeschull, F.; Groß, A. Unraveling Propylene Oxide Formation in Alkali Metal Batteries. ChemSusChem 2023, 17, e202300995. doi:10.1002/cssc.202300995
  • Muhamad, S. U.; Idris, N. H.; Yusoff, H. M.; Md Din, M. F.; Majid, S. R.; Noerochim, L. Molten salt synthesis of disordered spinel CoFe2O4 with improved electrochemical performance for sodium-ion batteries. RSC advances 2023, 13, 34200–34209. doi:10.1039/d3ra07050f
  • Singaraj, J. M.; Mary, A. S. V. J.; Bhaskara, P.; Dhamodharan, S.; Selvamani, O.; Palani, K. N.; Natesan, B. A Detailed Discourse on the Epistemology of Lithium‐Sulfur Batteries. Chemical Engineering & Technology 2023, 47, 408–429. doi:10.1002/ceat.202300320
  • Lu, W.; Xu, H.; Wu, J.; Xue, M.; Xing, Z. Preparation and Properties of Sulfur/Activated Carbon/Carbon Nanotube Composite Cathode Materials for Lithium–Sulfur Batteries. Journal of Materials Engineering and Performance 2023. doi:10.1007/s11665-023-08789-2
  • Mota, J. V.; Albuquerque, M.; Brandell, D.; Costa, L. T. Exploring structural and dynamical properties of polymer-ionic liquid ternary electrolytes for sodium ion batteries. Electrochimica Acta 2023, 461, 142635. doi:10.1016/j.electacta.2023.142635
  • Cai, S.; An, Y.; Feng, Y.; Duan, L.; Zhang, H.; Zhang, M.; Wu, J.; Tang, H. 高效多孔碳基催化剂的研究进展及其在锌空气电池中应用. Science China Materials 2023, 66, 3381–3400. doi:10.1007/s40843-023-2527-7
  • Ramírez, C.; Osendi, M. I.; Moyano, J. J.; Mosa, J.; Aparicio, M. Electrochemical Response of 3D-Printed Free-Standing Reduced Graphene Oxide Electrode for Sodium Ion Batteries Using a Three-Electrode Glass Cell. Materials (Basel, Switzerland) 2023, 16, 5386. doi:10.3390/ma16155386
  • Pan, Z.-T.; He, Z.-H.; Hou, J.-F.; Kong, L.-B. Designing CoHCF@FeHCF Core-Shell Structures to Enhance the Rate Performance and Cycling Stability of Sodium-Ion Batteries. Small (Weinheim an der Bergstrasse, Germany) 2023, 19, e2302788. doi:10.1002/smll.202302788
  • Oni, O. V.; Oyekunle, I. P.; Akanni, O. J.; Ayejoto, D. A. A review on ZIF carbon materials for sodium-ion battery. Materials Science and Technology 2023, 39, 2616–2632. doi:10.1080/02670836.2023.2228107
  • Zhu, Y.; Ge, M.; Ma, F.; Wang, Q.; Huang, P.; Lai, C. Multifunctional Electrolyte Additives for Better Metal Batteries. Advanced Functional Materials 2023, 34. doi:10.1002/adfm.202301964
Other Beilstein-Institut Open Science Activities