Optimization of phase contrast in bimodal amplitude modulation AFM

Mehrnoosh Damircheli, Amir F. Payam and Ricardo Garcia
Beilstein J. Nanotechnol. 2015, 6, 1072–1081. https://doi.org/10.3762/bjnano.6.108

Cite the Following Article

Optimization of phase contrast in bimodal amplitude modulation AFM
Mehrnoosh Damircheli, Amir F. Payam and Ricardo Garcia
Beilstein J. Nanotechnol. 2015, 6, 1072–1081. https://doi.org/10.3762/bjnano.6.108

How to Cite

Damircheli, M.; Payam, A. F.; Garcia, R. Beilstein J. Nanotechnol. 2015, 6, 1072–1081. doi:10.3762/bjnano.6.108

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zeng, Y.; Liu, G.; Liu, J.; Wei, Z. Effect of excitation frequencies on phase contrast in tapping mode atomic force microscope. Vibroengineering Procedia 2023, 52, 28–34. doi:10.21595/vp.2023.23721
  • Lou, Z.; Zhang, Y.; Li, Y.; Xu, L. Study on microscopic physical and chemical properties of biomass materials by AFM. Journal of Materials Research and Technology 2023, 24, 10005–10026. doi:10.1016/j.jmrt.2023.05.176
  • Damircheli, M.; Jung, U.; Wagner, R. The effect of sample viscoelastic properties and cantilever amplitudes on maximum repulsive force, indentation, and energy dissipation in bimodal AFM. Physica Scripta 2023, 98, 35708–035708. doi:10.1088/1402-4896/acb973
  • Zhou, X.; Zhuo, R. Stability and contrast in bimodal amplitude modulation atomic force microscopy for different mode combinations in ambient air. AIP Advances 2022, 12. doi:10.1063/5.0085325
  • Martin-Jimenez, D.; Ruppert, M. G.; Ihle, A.; Ahles, S.; Wegner, H. A.; Schirmeisen, A.; Ebeling, D. Chemical bond imaging using torsional and flexural higher eigenmodes of qPlus sensors. Nanoscale 2022, 14, 5329–5339. doi:10.1039/d2nr01062c
  • Yilmaz, C.; Sahin, R.; Topal, E. S. Theoretical study on the sensitivity of dynamic acoustic force measurement through monomodal and bimodal excitations of rectangular micro-cantilever. Engineering Research Express 2021, 3, 045035. doi:10.1088/2631-8695/ac3a55
  • Yilmaz, C.; Sahin, R.; Topal, E. S. Exploring the static acoustic force sensitivity using AFM micro-cantilever under single- and bimodal-frequency excitation. Measurement Science and Technology 2021, 32, 115001. doi:10.1088/1361-6501/ac0eb1
  • Kouchaksaraei, M. G.; Bahrami, A. High-resolution compositional mapping of surfaces in non-contact atomic force microscopy by a new multi-frequency excitation. Ultramicroscopy 2021, 227, 113317. doi:10.1016/j.ultramic.2021.113317
  • Silbernagl, D.; Khorasani, M. G. Z.; Murillo, N. C.; Elert, A. M.; Sturm, H. Bulk chemical composition contrast from attractive forces in AFM force spectroscopy. Beilstein journal of nanotechnology 2021, 12, 58–71. doi:10.3762/bjnano.12.5
  • Bhalla, N.; Pan, Y.; Yang, Z.; Payam, A. F. Opportunities and Challenges for Biosensors and Nanoscale Analytical Tools for Pandemics: COVID-19. ACS nano 2020, 14, 7783–7807. doi:10.1021/acsnano.0c04421
  • Xu, K.; Fu, C.; Li, Z. Design and implementation of dynamic atomic force microscope simulation system. Optik 2020, 207, 163771. doi:10.1016/j.ijleo.2019.163771
  • Eslami, B.; Damircheli, M. Biharmonic versus bimodal AFM: Numerical and experimental study on soft matter. Journal of Applied Physics 2019, 126, 095301. doi:10.1063/1.5116794
  • Damircheli, M.; Eslami, B. Enhancing phase contrast for bimodal AFM imaging in low quality factor environments. Ultramicroscopy 2019, 204, 18–26. doi:10.1016/j.ultramic.2019.05.001
  • Marinushkin, P. S.; Levitskiy, A. A.; Ivanov, T.; Rangelow, I. W.; Маринушкин, П.; Левицкий, А.; Иванов, Т.; Рангелов, И. Dynamic Modeling of Multimode Resonance Measuring Mode in Atomic-Force Microscopy with Piezoresistive, Self-Actuating Cantilevers. Journal of Siberian Federal University. Engineering & Technologies 2018, 11, 645–658. doi:10.17516/1999-494x-0082
  • Ambrosio, A.; Jauregui, L. A.; Dai, S.; Chaudhary, K.; Tamagnone, M.; Fogler, M. M.; Basov, D.; Capasso, F.; Kim, P.; Wilson, W. L. Mechanical Detection and Imaging of Hyperbolic Phonon Polaritons in Hexagonal Boron Nitride. ACS nano 2017, 11, 8741–8746. doi:10.1021/acsnano.7b02323
  • Ambrosio, A.; Devlin, R. C.; Capasso, F.; Wilson, W. L. Observation of Nanoscale Refractive Index Contrast via Photoinduced Force Microscopy. ACS Photonics 2017, 4, 846–851. doi:10.1021/acsphotonics.6b00911
  • Jahng, J.; Kim, B.; Lee, E. S.; Potma, E. O. Quantitative analysis of sideband coupling in photoinduced force microscopy. Physical Review B 2016, 94, 195407. doi:10.1103/physrevb.94.195407
  • González-Domínguez, I.; Gutiérrez-Granados, S.; Cervera, L.; Gòdia, F.; Domingo, N. Identification of HIV-1–Based Virus-like Particles by Multifrequency Atomic Force Microscopy. Biophysical journal 2016, 111, 1173–1179. doi:10.1016/j.bpj.2016.07.046
  • Glatzel, T.; Schimmel, T. Advanced atomic force microscopy techniques III. Beilstein journal of nanotechnology 2016, 7, 1052–1054. doi:10.3762/bjnano.7.98
  • Lai, C.-Y.; Santos, S.; Chiesa, M. Systematic Multidimensional Quantification of Nanoscale Systems From Bimodal Atomic Force Microscopy Data. ACS nano 2016, 10, 6265–6272. doi:10.1021/acsnano.6b02455
Other Beilstein-Institut Open Science Activities