Increasing throughput of AFM-based single cell adhesion measurements through multisubstrate surfaces

Miao Yu, Nico Strohmeyer, Jinghe Wang, Daniel J. Müller and Jonne Helenius
Beilstein J. Nanotechnol. 2015, 6, 157–166. https://doi.org/10.3762/bjnano.6.15

Cite the Following Article

Increasing throughput of AFM-based single cell adhesion measurements through multisubstrate surfaces
Miao Yu, Nico Strohmeyer, Jinghe Wang, Daniel J. Müller and Jonne Helenius
Beilstein J. Nanotechnol. 2015, 6, 157–166. https://doi.org/10.3762/bjnano.6.15

How to Cite

Yu, M.; Strohmeyer, N.; Wang, J.; Müller, D. J.; Helenius, J. Beilstein J. Nanotechnol. 2015, 6, 157–166. doi:10.3762/bjnano.6.15

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Herzog, S.; Fläschner, G.; Incaviglia, I.; Arias, J. C.; Ponti, A.; Strohmeyer, N.; Nava, M. M.; Müller, D. J. Monitoring the mass, eigenfrequency, and quality factor of mammalian cells. Nature communications 2024, 15, 1751. doi:10.1038/s41467-024-46056-7
  • Aretz, J.; Aziz, M.; Strohmeyer, N.; Sattler, M.; Fässler, R. Talin and kindlin use integrin tail allostery and direct binding to activate integrins. Nature structural & molecular biology 2023, 30, 1913–1924. doi:10.1038/s41594-023-01139-9
  • Almalla, A.; Elomaa, L.; Bechtella, L.; Daneshgar, A.; Yavvari, P.; Mahfouz, Z.; Tang, P.; Koksch, B.; Sauer, I.; Pagel, K.; Hillebrandt, K. H.; Weinhart, M. Papain-Based Solubilization of Decellularized Extracellular Matrix for the Preparation of Bioactive, Thermosensitive Pregels. Biomacromolecules 2023, 24, 5620–5637. doi:10.1021/acs.biomac.3c00602
  • Ahn, S.; Sharma, U.; Kasuba, K. C.; Strohmeyer, N.; Müller, D. J. Engineered Biomimetic Fibrillar Fibronectin Matrices Regulate Cell Adhesion Initiation, Migration, and Proliferation via α5β1 Integrin and Syndecan-4 Crosstalk. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2023, 10, e2300812. doi:10.1002/advs.202300812
  • Huber, M.; Casares-Arias, J.; Fässler, R.; Müller, D. J.; Strohmeyer, N. In mitosis integrins reduce adhesion to extracellular matrix and strengthen adhesion to adjacent cells. Nature communications 2023, 14, 2143. doi:10.1038/s41467-023-37760-x
  • Böttcher, R. T.; Strohmeyer, N.; Aretz, J.; Fässler, R. New insights into the phosphorylation of the threonine motif of the β1 integrin cytoplasmic domain. Life science alliance 2022, 5, e202101301. doi:10.26508/lsa.202101301
  • Viljoen, A.; Mathelié-Guinlet, M.; Ray, A.; Strohmeyer, N.; Oh, Y. J.; Hinterdorfer, P.; Müller, D. J.; Alsteens, D.; Dufrêne, Y. F. Force spectroscopy of single cells using atomic force microscopy. Nature Reviews Methods Primers 2021, 1, 1–24. doi:10.1038/s43586-021-00062-x
  • Pattem, J.; Swift, T.; Rimmer, S.; Holmes, T.; MacNeil, S.; Shepherd, J. Development of a novel micro-bead force spectroscopy approach to measure the ability of a thermo-active polymer to remove bacteria from a corneal model. Scientific reports 2021, 11, 13697. doi:10.1038/s41598-021-93172-1
  • Dao, L.; Blaue, C.; Franz, C. M. Integrin α2β1 as a negative regulator of the laminin receptors α6β1 and α6β4. Micron (Oxford, England : 1993) 2021, 148, 103106. doi:10.1016/j.micron.2021.103106
  • Benito-Jardón, M.; Strohmeyer, N.; Ortega-Sanchís, S.; Bharadwaj, M.; Moser, M.; Müller, D. J.; Fässler, R.; Costell, M. αv-Class integrin binding to fibronectin is solely mediated by RGD and unaffected by an RGE mutation. The Journal of cell biology 2020, 219. doi:10.1083/jcb.202004198
  • Khemthongcharoen, N.; Uawithya, P.; Chanasakulniyom, M.; Yasawong, M.; Jeamsaksiri, W.; Sripumkhai, W.; Pattamang, P.; Juntasaro, E.; Houngkamhang, N.; Thienthong, T.; Promptmas, C. Polydimethylsiloxane (PDMS) microfluidic modifications for cell-based immunofluorescence assay. Journal of Adhesion Science and Technology 2020, 35, 955–972. doi:10.1080/01694243.2020.1831837
  • Sviridova, O. V. Peculiarities of image acquirement and analysis in AFM electrical modes. 2020.
  • Kim, H.; Witt, H.; Oswald, T. A.; Tarantola, M. Adhesion of Epithelial Cells to PNIPAm Treated Surfaces for Temperature-Controlled Cell-Sheet Harvesting. ACS applied materials & interfaces 2020, 12, 33516–33529. doi:10.1021/acsami.0c09166
  • Kiio, T. M.; Park, S. Nano-scientific Application of Atomic Force Microscopy in Pathology: from Molecules to Tissues. International journal of medical sciences 2020, 17, 844–858. doi:10.7150/ijms.41805
  • Spoerri, P. M.; Strohmeyer, N.; Sun, Z.; Fässler, R.; Müller, D. J. Protease-activated receptor signalling initiates α 5 β 1 -integrin-mediated adhesion in non-haematopoietic cells. Nature materials 2020, 19, 218–226. doi:10.1038/s41563-019-0580-4
  • Wala, J.; Das, S. Mapping of biomechanical properties of cell lines on altered matrix stiffness using atomic force microscopy. Biomechanics and modeling in mechanobiology 2020, 19, 1523–1536. doi:10.1007/s10237-019-01285-4
  • Ribeiro, S.; Puckert, C.; Ribeiro, C.; Gomes, A. C.; Higgins, M. J.; Lanceros-Méndez, S. Surface Charge-Mediated Cell-Surface Interaction on Piezoelectric Materials. ACS applied materials & interfaces 2019, 12, 191–199. doi:10.1021/acsami.9b17222
  • Wysotzki, P.; Gimsa, J. Surface Coatings Modulate the Differences in the Adhesion Forces of Eukaryotic and Prokaryotic Cells as Detected by Single Cell Force Microscopy. International journal of biomaterials 2019, 2019, 7024259. doi:10.1155/2019/7024259
  • Puckert, C.
  • Niu, Y.; Zhang, X.; Si, T.; Zhang, Y.; Qi, L.; Zhao, G.; Xu, R. X.; He, X.; Zhao, Y. Simultaneous Measurements of Geometric and Viscoelastic Properties of Hydrogel Microbeads Using Continuous-Flow Microfluidics with Embedded Electrodes. Small (Weinheim an der Bergstrasse, Germany) 2017, 13, 1702821. doi:10.1002/smll.201702821
Other Beilstein-Institut Open Science Activities