Mechanical properties of MDCK II cells exposed to gold nanorods

Anna Pietuch, Bastian Rouven Brückner, David Schneider, Marco Tarantola, Christina Rosman, Carsten Sönnichsen and Andreas Janshoff
Beilstein J. Nanotechnol. 2015, 6, 223–231. https://doi.org/10.3762/bjnano.6.21

Cite the Following Article

Mechanical properties of MDCK II cells exposed to gold nanorods
Anna Pietuch, Bastian Rouven Brückner, David Schneider, Marco Tarantola, Christina Rosman, Carsten Sönnichsen and Andreas Janshoff
Beilstein J. Nanotechnol. 2015, 6, 223–231. https://doi.org/10.3762/bjnano.6.21

How to Cite

Pietuch, A.; Brückner, B. R.; Schneider, D.; Tarantola, M.; Rosman, C.; Sönnichsen, C.; Janshoff, A. Beilstein J. Nanotechnol. 2015, 6, 223–231. doi:10.3762/bjnano.6.21

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Bermudez, A.; Gonzalez, Z.; Zhao, B.; Salter, E.; Liu, X.; Ma, L.; Jawed, M. K.; Hsieh, C.-J.; Lin, N. Y. C. Supracellular measurement of spatially varying mechanical heterogeneities in live monolayers. Biophysical journal 2022, 121, 3358–3369. doi:10.1016/j.bpj.2022.08.024
  • Kodera, S.; Watanabe, T.; Yokoyama, Y.; Hayakawa, T. Microgripper Using Soft Microactuators for Manipulation of Living Cells. Micromachines 2022, 13, 794. doi:10.3390/mi13050794
  • Kolesnik, I. A.; Kletskov, A. V.; Potkin, V. I.; Knizhnikov, V. A.; Zvereva, T. D.; Kurman, P. V.; Tokalchik, Y. P.; Kulchitsky, V. A. Glycylglycine and Its Morpholide Derivatives Containing 5-(p-Tolyl)isoxazole and 4,5-Dichloroisothiazole Moieties. Russian Journal of Organic Chemistry 2021, 57, 1584–1591. doi:10.1134/s1070428021100031
  • Luciano, M.; Xue, S.-L.; De Vos, W. H.; Redondo-Morata, L.; Surin, M.; Lafont, F.; Hannezo, E.; Gabriele, S. Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation. Nature Physics 2021, 1–9.
  • Luciano, M.; Xue, S.-L.; De Vos, W. H.; Redondo-Morata, L.; Surin, M.; Lafont, F.; Hannezo, E.; Gabriele, S. Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation. Nature Physics 2021, 17, 1382–1390. doi:10.1038/s41567-021-01374-1
  • Feller, K.-H. Mammalian Cell-Based Biosensors. Handbook of Cell Biosensors; Springer International Publishing, 2021; pp 407–433. doi:10.1007/978-3-030-23217-7_193
  • Kashani, A. S.; Packirisamy, M. Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses. International journal of molecular sciences 2021, 22, 9587. doi:10.3390/ijms22179587
  • Feller, K.-H. Mammalian Cell-Based Biosensors. Handbook of Cell Biosensors; Springer International Publishing, 2021; pp 1–28. doi:10.1007/978-3-319-47405-2_193-2
  • Feller, K.-H. Handbook of Cell Biosensors - Mammalian Cell-Based Biosensors. Handbook of Cell Biosensors; Springer International Publishing, 2021; pp 1–27. doi:10.1007/978-3-319-47405-2_193-1
  • Singh, A.; Maharjan, R.-S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-Learning-Based Approach to Decode the Influence of Nanomaterial Properties on Their Interaction with Cells. ACS applied materials & interfaces 2020, 13, 1943–1955. doi:10.1021/acsami.0c18470
  • Michaelis, S.; Wegener, J. Cells as Sensors. Biological Transformation; Springer Berlin Heidelberg, 2020; pp 105–127. doi:10.1007/978-3-662-59659-3_7
  • Barkhuisen, J. L. Ph.D. Thesis, Sept 1, 2019.
  • Michaelis, S.; Wegener, J. Zellen als Sensoren. Biologische Transformation; Springer Berlin Heidelberg, 2019; pp 109–132. doi:10.1007/978-3-662-58243-5_7
  • Kletskov, A. V.; Potkin, V. I.; Kolesnik, I. A.; Petkevich, S. K.; Kvachonak, A. V.; Dosina, M.; Loiko, D. O.; Larchenko, M. V.; Pashkevich, S. G.; Kulchitsky, V. A. Synthesis and Biological Activity of Novel Comenic Acid Derivatives Containing Isoxazole and Isothiazole Moieties. Natural Product Communications 2018, 13, 1934578X1801301. doi:10.1177/1934578x1801301124
  • Yu, S.-M.; Oh, J. M.; Lee, J.; Lee-Kwon, W.; Jung, W.; Amblard, F.; Granick, S.; Cho, Y.-K. Substrate curvature affects the shape, orientation, and polarization of renal epithelial cells. Acta biomaterialia 2018, 77, 311–321. doi:10.1016/j.actbio.2018.07.019
  • Zhang, L.; Zhao, Y.; Wang, X. Nanoparticle-Mediated Mechanical Destruction of Cell Membranes: A Coarse-Grained Molecular Dynamics Study. ACS applied materials & interfaces 2017, 9, 26665–26673. doi:10.1021/acsami.7b05741
  • Ali, M. R. K.; Wu, Y.; Ghosh, D.; H., B.; Chen, K.; Dawson, M. R.; Fang, N.; Sulchek, T.; El-Sayed, M. A. Nuclear Membrane-Targeted Gold Nanoparticles Inhibit Cancer Cell Migration and Invasion. ACS nano 2017, 11, 3716–3726. doi:10.1021/acsnano.6b08345
  • Sperber, M.; Hupf, C.; Lemberger, M.-M.; Goricnik, B.; Hinterreiter, N.; Lukic, S.; Oberleitner, M.; Stolwijk, J. A.; Wegener, J. Monitoring the Impact of Nanomaterials on Animal Cells by Impedance Analysis: A Noninvasive, Label-Free, and Multimodal Approach. Measuring Biological Impacts of Nanomaterials; Springer International Publishing, 2015; pp 45–108. doi:10.1007/11663_2015_13
Other Beilstein-Institut Open Science Activities