Cite the Following Article
Nanoparticle shapes by using Wulff constructions and first-principles calculations
Georgios D. Barmparis, Zbigniew Lodziana, Nuria Lopez and Ioannis N. Remediakis
Beilstein J. Nanotechnol. 2015, 6, 361–368.
https://doi.org/10.3762/bjnano.6.35
How to Cite
Barmparis, G. D.; Lodziana, Z.; Lopez, N.; Remediakis, I. N. Beilstein J. Nanotechnol. 2015, 6, 361–368. doi:10.3762/bjnano.6.35
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Liu, L.; Ahmadi, Y.; Kim, Y.-H.; Kim, K.-H. Advances in morphological and interfacial tuning of metal oxides for electrochemical CO2 conversion. Progress in Materials Science 2026, 155, 101522. doi:10.1016/j.pmatsci.2025.101522
- Fan, Y.; Chen, Y.; Wang, J.; Gu, L.; Zhou, K.; Gong, Y.; Liu, W.; Zhao, Y.; Liu, X.; Nie, J. Insights into crystal growth and morphology evolution mechanism of multi-component carbide: Experiments and first-principles calculations. Journal of Materials Science & Technology 2026, 240, 27–34. doi:10.1016/j.jmst.2025.03.057
- Mora Perez, C.; Glenna, D. M.; Hermosillo, E.; Donnellan, Z.; Ghosh, S.; Gessner, O.; Qian, J. Electronic Structure of the Au Nanoparticle-TiO2 Heterojunction: Influence of Nanoparticle Size, Shape, Oxygen Vacancies, and Temperature. The journal of physical chemistry. C, Nanomaterials and interfaces 2025, 129, 22021–22032. doi:10.1021/acs.jpcc.5c05449
- Kong, M.; Jing, H.; Yang, J.; Liu, X.; Shen, Y.; White, J. C. Size-engineered magnetite nanoparticles protect rice from Fusarium graminearum via direct antifungal activity and immune activation. Communications Earth & Environment 2025, 7. doi:10.1038/s43247-025-03055-w
- Xiao, J.; Wang, C.; Meng, H.; Wang, C.; Li, H.; Cheng, Y.-X.; Yi, N.; Yuan, W.; Zhou, W.; Cao, L.; Wang, L.; Xiao, F.-S. Spontaneous deposition of boron oxide on a rhodium nanostructure for selective conversion of syngas to ethanol. Chemical science 2025, 16, 22002–22009. doi:10.1039/d5sc06161j
- Li, L.; Li, R.; Lei, D.; Wang, Y.; Peng, X.; Wang, X. Revealing the Mechanisms of the Morphological Response of α-Calcium Sulfate Hemihydrate to Aluminum Hydroxide by Density Functional Theory Simulations and Experimental Methods. Langmuir : the ACS journal of surfaces and colloids 2025, 41, 31133–31143. doi:10.1021/acs.langmuir.5c03891
- Mangan, G.; Stewart, A. Analysis of 4D-STEM methods for detecting metallic nanoparticles in amorphous ice: A numerical study. Micron (Oxford, England : 1993) 2025, 201, 103956. doi:10.1016/j.micron.2025.103956
- Mehdizadeh, A.; Schindler, P. Surface stability modeling with universal machine learning interatomic potentials: a comprehensive cleavage energy benchmarking study. AI for Science 2025, 1, 25002. doi:10.1088/3050-287x/ae1408
- de Oliveira, R. C.; Von Stein, R.; Teixeira, M. M.; Assis, M.; Pereira, E. C.; Sambrano, J. R.; Simões, A. Z.; Longo, E.; Custodio, S.; Andres, J.; Gracia, L. Crystal surface engineering in Ag 4 V 2 O 7 : Boosting photocatalytic degradation of ciprofloxacin. Journal of the American Ceramic Society 2025, 109. doi:10.1111/jace.70321
- Myasnichenko, V.; Mikhov, R.; Sdobnykov, N.; Kirilov, L.; Bazulev, A. Lattice Monte Carlo Simulation of Atomic Ordering in Gold-Silver Nanocages. WSEAS TRANSACTIONS ON ELECTRONICS 2025, 16, 157–167. doi:10.37394/232017.2025.16.16
- Maxson, T.; Szilvási, T. Metal‐Support Interactions Reshape Nanoparticle Catalyst Surfaces. Angewandte Chemie Novit 2025, 1. doi:10.1002/anov.70008
- Ge, X.; Jing, Y.; Wang, W.; Cao, Y.; Zhang, J.; Qian, G.; Jiang, H.; Zhou, X.; Chen, D.; Yuan, W.; Duan, X. Synergizing Pd1Sb2 Site with Neighboring Near-Surface Pd Site to Break the Trade-Off between Selectivity and Activity of Alkyne Semihydrogenation. Journal of the American Chemical Society 2025, 147, 30178–30189. doi:10.1021/jacs.5c08564
- Lyssenko, S.; Amar, M.; Sermiagin, A.; Minnes, R. Carboxylic ligands and their influence on the structural properties of PbTe quantum dots. PloS one 2025, 20, e0328972. doi:10.1371/journal.pone.0328972
- Ding, P. C.; Zhang, Y.; Li, W. J.; Li, Z. M.; Wang, X. L.; Liu, P. F.; Yang, H. G. Anisotropy of Single‐Crystal Semiconductors in Photo(electro)Catalysis. Angewandte Chemie 2025, 137. doi:10.1002/ange.202511706
- Ding, P. C.; Zhang, Y.; Li, W. J.; Li, Z. M.; Wang, X. L.; Liu, P. F.; Yang, H. G. Anisotropy of Single-Crystal Semiconductors in Photo(electro)Catalysis. Angewandte Chemie (International ed. in English) 2025, 64, e202511706. doi:10.1002/anie.202511706
- Uppala, V. V. S.; Dones Lassalle, C. Y.; Kelm, J. E.; Camp, A. M.; Ter Horst, M. A.; Esker, A. R.; Dempsey, J. L.; Madsen, L. A. Ligand Exchange and Binding at the Surface of PbS Quantum Dots Quantified Using Multimodal Magnetic Resonance. ACS nano 2025, 19, 27246–27258. doi:10.1021/acsnano.5c03943
- McIntyre, S. M.; Garden, A. L. Computational modelling of nanoparticle catalysis. Nanoscale 2025, 17, 14491–14520. doi:10.1039/d4nr04364b
- Huang, Y.; Thompson, G. B.; Weinberger, C. R. The Role of Carbon Depletion in the Morphology of Transition Metal Carbide Crystals. Crystal Growth & Design 2025, 25, 4881–4891. doi:10.1021/acs.cgd.5c00395
- Wang, N. GDGen: A gradient descent-based methodology for the generation of optimized spatial configurations of customized clusters in computational simulations. Computer Physics Communications 2025, 310, 109526. doi:10.1016/j.cpc.2025.109526
- Manjit Borah. Theoretical Insights into Growth Mechanisms of ZnO Nanorods. Journal of Nanoscience and Technology 2025, 10, 995–998. doi:10.30799/jnst.357.25100201