Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments

Horacio V. Guzman, Pablo D. Garcia and Ricardo Garcia
Beilstein J. Nanotechnol. 2015, 6, 369–379. https://doi.org/10.3762/bjnano.6.36

Cite the Following Article

Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments
Horacio V. Guzman, Pablo D. Garcia and Ricardo Garcia
Beilstein J. Nanotechnol. 2015, 6, 369–379. https://doi.org/10.3762/bjnano.6.36

How to Cite

Guzman, H. V.; Garcia, P. D.; Garcia, R. Beilstein J. Nanotechnol. 2015, 6, 369–379. doi:10.3762/bjnano.6.36

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Heath, G. R.; Micklethwaite, E.; Storer, T. M. NanoLocz: Image Analysis Platform for AFM, High-Speed AFM, and Localization AFM. Small methods 2024, e2301766. doi:10.1002/smtd.202301766
  • Xia, F.; Rangelow, I. W.; Youcef-Toumi, K. AFM Imaging Control and System Integration. Active Probe Atomic Force Microscopy; Springer International Publishing, 2024; pp 249–285. doi:10.1007/978-3-031-44233-9_9
  • Gisbert, V. G.; Garcia, R. Fast and high-resolution mapping of van der Waals forces of 2D materials interfaces with bimodal AFM. Nanoscale 2023, 15, 19196–19202. doi:10.1039/d3nr05274e
  • He, Y.; Wang, J.; Yan, Y.; Geng, Y. Periodic nanostructures on single-crystal copper for SERS substrate fabricated by using AFM dynamic lithography. Vacuum 2023, 218, 112595. doi:10.1016/j.vacuum.2023.112595
  • Ganser, C.; Uchihashi, T. Measuring mechanical properties with high-speed atomic force microscopy. Microscopy (Oxford, England) 2023, 73, 14–21. doi:10.1093/jmicro/dfad051
  • He, Y.; Yan, Y.; Geng, Y. Morphology measurements by AFM tapping without causing surface damage: A phase shift characterization. Ultramicroscopy 2023, 254, 113832. doi:10.1016/j.ultramic.2023.113832
  • Gisbert, V. G.; Garcia, R. Insights and guidelines to interpret forces and deformations at the nanoscale by using a tapping mode AFM simulator: dForce 2.0. Soft matter 2023, 19, 5857–5868. doi:10.1039/d3sm00334e
  • Tsai, C.-P.; Li, W.-C. Micromechanical vibro-impact systems: a review. Journal of Micromechanics and Microengineering 2023, 33, 93001–093001. doi:10.1088/1361-6439/ace6ae
  • He, Y.; Zhang, L.; Cui, J.; Hu, J. Blunting and wear of AFM tips during dynamic lithography. Wear 2023, 522, 204694. doi:10.1016/j.wear.2023.204694
  • Cheng, B.; Wu, D.; Bian, K.; Tian, Y.; Guo, C.; Liu, K.; Jiang, Y. A qPlus-based scanning probe microscope compatible with optical measurements. The Review of scientific instruments 2022, 93, 043701. doi:10.1063/5.0082369
  • Gisbert, V. G.; Garcia, R. Accurate Wide-Modulus-Range Nanomechanical Mapping of Ultrathin Interfaces with Bimodal Atomic Force Microscopy. ACS nano 2021, 15, 20574–20581. doi:10.1021/acsnano.1c09178
  • Collinson, D. W.; Sheridan, R. J.; Palmeri, M. J.; Brinson, L. C. Best practices and recommendations for accurate nanomechanical characterization of heterogeneous polymer systems with atomic force microscopy. Progress in Polymer Science 2021, 119, 101420. doi:10.1016/j.progpolymsci.2021.101420
  • Kouchaksaraei, M. G.; Bahrami, A. High-resolution compositional mapping of surfaces in non-contact atomic force microscopy by a new multi-frequency excitation. Ultramicroscopy 2021, 227, 113317. doi:10.1016/j.ultramic.2021.113317
  • Gisbert, V. G.; Benaglia, S.; Uhlig, M. R.; Proksch, R.; Garcia, R. High-Speed Nanomechanical Mapping of the Early Stages of Collagen Growth by Bimodal Force Microscopy. ACS nano 2021, 15, 1850–1857. doi:10.1021/acsnano.0c10159
  • López-Guerra, E. A.; Solares, S. D. On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges. Beilstein journal of nanotechnology 2020, 11, 1409–1418. doi:10.3762/bjnano.11.125
  • Garcia, R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chemical Society reviews 2020, 49, 5850–5884. doi:10.1039/d0cs00318b
  • Lin, Y.-C.; Guo, Y. R.; Miyagi, A.; Levring, J.; MacKinnon, R.; Scheuring, S. Force-induced conformational changes in PIEZO1. Nature 2019, 573, 230–234. doi:10.1038/s41586-019-1499-2
  • Benaglia, S.; Amo, C. A.; Garcia, R. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM. Nanoscale 2019, 11, 15289–15297. doi:10.1039/c9nr04396a
  • Wagner, T. Steady-state and transient behavior in dynamic atomic force microscopy. Journal of Applied Physics 2019, 125, 044301. doi:10.1063/1.5078954
  • Pinto, F. The Future of van der Waals Force-Enabled Technology Transfer into the Aerospace Marketplace. Nanotube Superfiber Materials; Elsevier, 2019; pp 729–794. doi:10.1016/b978-0-12-812667-7.00029-x
Other Beilstein-Institut Open Science Activities