Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air–blood barrier model

Jennifer Y. Kasper, Lisa Feiden, Maria I. Hermanns, Christoph Bantz, Michael Maskos, Ronald E. Unger and C. James Kirkpatrick
Beilstein J. Nanotechnol. 2015, 6, 517–528. https://doi.org/10.3762/bjnano.6.54

Cite the Following Article

Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air–blood barrier model
Jennifer Y. Kasper, Lisa Feiden, Maria I. Hermanns, Christoph Bantz, Michael Maskos, Ronald E. Unger and C. James Kirkpatrick
Beilstein J. Nanotechnol. 2015, 6, 517–528. https://doi.org/10.3762/bjnano.6.54

How to Cite

Kasper, J. Y.; Feiden, L.; Hermanns, M. I.; Bantz, C.; Maskos, M.; Unger, R. E.; Kirkpatrick, C. J. Beilstein J. Nanotechnol. 2015, 6, 517–528. doi:10.3762/bjnano.6.54

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kaur, J.; Sharma, A.; Passi, G.; Dey, P.; Khajuria, A.; Alajangi, H. K.; Jaiswal, P. K.; Barnwal, R. P.; Singh, G. Nanomedicine at the Pulmonary Frontier: Immune-Centric Approaches for Respiratory Disease Treatment. Immunological investigations 2024, 1–53. doi:10.1080/08820139.2023.2298398
  • Fu, A.; Mao, S.; Kasai, N.; Zhu, H.; Zeng, H. Dynamic tissue model in vitro and its application for assessment of microplastics-induced toxicity to air-blood barrier (ABB). Biosensors & bioelectronics 2023, 246, 115858. doi:10.1016/j.bios.2023.115858
  • Sevinc Ozdemir, N.; Belyaev, D.; Castro, M. N.; Balakin, S.; Opitz, J.; Wihadmadyatami, H.; Anggraeni, R.; Yucel, D.; Kenar, H.; Beshchasna, N.; Ana, I. D.; Hasirci, V. Advances in In Vitro Blood-Air Barrier Models and the Use of Nanoparticles in COVID-19 Research. Tissue engineering. Part B, Reviews 2023, 30, 82–96. doi:10.1089/ten.teb.2023.0117
  • Breder-Bonk, C.; Docter, D.; Barz, M.; Strieth, S.; Knauer, S. K.; Gül, D.; Stauber, R. H. The Apoptosis Inhibitor Protein Survivin Is a Critical Cytoprotective Resistor against Silica-Based Nanotoxicity. Nanomaterials (Basel, Switzerland) 2023, 13, 2546. doi:10.3390/nano13182546
  • Brandão, F.; Costa, C.; Bessa, M. J.; Valdiglesias, V.; Hellack, B.; Haase, A.; Fraga, S.; Teixeira, J. P. Multiparametric in vitro genotoxicity assessment of different variants of amorphous silica nanomaterials in rat alveolar epithelial cells. Nanotoxicology 2023, 17, 511–528. doi:10.1080/17435390.2023.2265481
  • Fu, A.; Chang, M.; Zhu, H.; Liu, H.; Wu, D.; Zeng, H. Air-blood barrier (ABB) on a chip. TrAC Trends in Analytical Chemistry 2023, 159, 116919. doi:10.1016/j.trac.2023.116919
  • Huck, B.; Hidalgo, A.; Waldow, F.; Schwudke, D.; Gaede, K. I.; Feldmann, C.; Carius, P.; Autilio, C.; Pérez-Gil, J.; Schwarzkopf, K.; Murgia, X.; Loretz, B.; Lehr, C.-M. Systematic Analysis of Composition, Interfacial Performance and Effects of Pulmonary Surfactant Preparations on Cellular Uptake and Cytotoxicity of Aerosolized Nanomaterials. Small Science 2021, 1, 2100067. doi:10.1002/smsc.202100067
  • Ferri, C.; Arcangeletti, M. C.; Caselli, E.; Zakrzewska, K.; Maccari, C.; Calderaro, A.; D'Accolti, M.; Soffritti, I.; Arvia, R.; Sighinolfi, G.; Artoni, E.; Giuggioli, D. Insights into the knowledge of complex diseases: Environmental infectious/toxic agents as potential etiopathogenetic factors of systemic sclerosis. Journal of autoimmunity 2021, 124, 102727. doi:10.1016/j.jaut.2021.102727
  • Rawal, S.; Patel, M. M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. Nano-micro letters 2021, 13, 142. doi:10.1007/s40820-021-00630-6
  • Caruso, G.; Fresta, C. G.; Costantino, A.; Lazzarino, G.; Amorini, A. M.; Lazzarino, G.; Tavazzi, B.; Lunte, S. M.; Dhar, P.; Gulisano, M.; Caraci, F. Lung Surfactant Decreases Biochemical Alterations and Oxidative Stress Induced by a Sub-Toxic Concentration of Carbon Nanoparticles in Alveolar Epithelial and Microglial Cells. International journal of molecular sciences 2021, 22, 2694. doi:10.3390/ijms22052694
  • Cao, Y.; Li, S.; Chen, J. Modeling better in vitro models for the prediction of nanoparticle toxicity: a review. Toxicology mechanisms and methods 2020, 31, 1–17. doi:10.1080/15376516.2020.1828521
  • Mousseau, F.; Oikonomou, E. K.; Vacher, A.; Airiau, M.; Mornet, S.; Berret, J.-F. Revealing the pulmonary surfactant corona on silica nanoparticles by cryo-transmission electron microscopy. Nanoscale advances 2020, 2, 642–647. doi:10.1039/c9na00779b
  • Li, J.; Yang, H.; Sha, S.; Li, J.; Zhou, Z.; Cao, Y. Evaluation of in vitro toxicity of silica nanoparticles (NPs) to lung cells: Influence of cell types and pulmonary surfactant component DPPC. Ecotoxicology and environmental safety 2019, 186, 109770. doi:10.1016/j.ecoenv.2019.109770
  • Maretti, E.; Rustichelli, C.; Gualtieri, M. L.; Costantino, L.; Siligardi, C.; Miselli, P.; Buttini, F.; Montecchi, M.; Leo, E.; Truzzi, E.; Iannuccelli, V. The Impact of Lipid Corona on Rifampicin Intramacrophagic Transport Using Inhaled Solid Lipid Nanoparticles Surface-Decorated with a Mannosylated Surfactant. Pharmaceutics 2019, 11, 508–528. doi:10.3390/pharmaceutics11100508
  • Garcia-Mouton, C.; Hidalgo, A.; Cruz, A.; Pérez-Gil, J. The Lord of the Lungs: The essential role of pulmonary surfactant upon inhalation of nanoparticles. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 2019, 144, 230–243. doi:10.1016/j.ejpb.2019.09.020
  • Osman, N.; Sexton, D. W.; Saleem, I. Toxicological assessment of nanoparticle interactions with the pulmonary system. Nanotoxicology 2019, 14, 21–58. doi:10.1080/17435390.2019.1661043
  • Schmitz, C.; Welck, J.; Tavernaro, I.; Grinberg, M.; Rahnenführer, J.; Kiemer, A. K.; van Thriel, C.; Hengstler, J. G.; Kraegeloh, A. Mechanical strain mimicking breathing amplifies alterations in gene expression induced by SiO2 NPs in lung epithelial cells. Nanotoxicology 2019, 13, 1227–1243. doi:10.1080/17435390.2019.1650971
  • Schneider-Daum, N.; Hittinger, M.; Murgia, X.; Lehr, C.-M. Cellular and Non-cellular Barriers to Particle Transport Across the Lungs. Biological Responses to Nanoscale Particles; Springer International Publishing, 2019; pp 171–189. doi:10.1007/978-3-030-12461-8_7
  • Zellnitz, S.; Roblegg, E.; Pinto, J. T.; Fröhlich, E. Delivery of Dry Powders to the Lungs: Influence of Particle Attributes from a Biological and Technological Point of View. Current drug delivery 2019, 16, 180–194. doi:10.2174/1567201815666181024143249
  • Jia, J.; Yuan, X.; Peng, X.; Yan, B. Cr(VI)/Pb2+ are responsible for PM2.5-induced cytotoxicity in A549 cells while pulmonary surfactant alleviates such toxicity. Ecotoxicology and environmental safety 2019, 172, 152–158. doi:10.1016/j.ecoenv.2019.01.073
Other Beilstein-Institut Open Science Activities