Influence of grain size and composition, topology and excess free volume on the deformation behavior of Cu–Zr nanoglasses

Daniel Şopu and Karsten Albe
Beilstein J. Nanotechnol. 2015, 6, 537–545. https://doi.org/10.3762/bjnano.6.56

Cite the Following Article

Influence of grain size and composition, topology and excess free volume on the deformation behavior of Cu–Zr nanoglasses
Daniel Şopu and Karsten Albe
Beilstein J. Nanotechnol. 2015, 6, 537–545. https://doi.org/10.3762/bjnano.6.56

How to Cite

Şopu, D.; Albe, K. Beilstein J. Nanotechnol. 2015, 6, 537–545. doi:10.3762/bjnano.6.56

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Yeh, C.-J.; Huang, C.-W.; Lo, Y.-C.; Ogata, S.; Li, D. Y.; Hu, H.-T.; Jang, J. S.-C. Effect of nanoglass grain size investigated by a mesoscale variable characteristic strain model. International Journal of Mechanical Sciences 2024, 266, 108981. doi:10.1016/j.ijmecsci.2024.108981
  • Song, W.; Meng, Y.; Xiao, L.; Liu, S. Tuning dynamic mechanical properties of Cu50Zr50 nanoglasses/ nanopolycrystalline Cu composites investigated by molecular dynamics simulation. Journal of Non-Crystalline Solids 2024, 625, 122715. doi:10.1016/j.jnoncrysol.2023.122715
  • Fu, X.; Lin, Y.; Zhu, M.; Wang, K.; Wu, J.; Tong, X.; Song, W.; Tan, M. J.; Yang, Y.; Shen, J.; Wang, G.; Shek, C. H.; Ritchie, R. O. The innate interfacial elastic strain field of a transformable B2 precipitate embedded in an amorphous matrix. npj Computational Materials 2023, 9. doi:10.1038/s41524-023-01182-6
  • Voigt, H.; Rigoni, A.; Boltynjuk, E.; Rösner, H.; Hahn, H.; Wilde, G. In situ TEM studies of relaxation dynamics and crystal nucleation in thin film nanoglasses. Materials Research Letters 2023, 11, 1022–1030. doi:10.1080/21663831.2023.2278597
  • Zhang, J.; Gao, P.; Zhang, W. Influence of the Hydrogen Doping Method on the Atomic Structure, Mechanical Properties and Relaxation Behaviors of Metallic Glasses. Materials (Basel, Switzerland) 2023, 16, 1731. doi:10.3390/ma16041731
  • Chen, Y.; Ding, J.; Sha, Z.-D. Grain Size and Heterophase Effects on Mechanical Properties of Mg-Cu Nanoglasses. Frontiers in Materials 2022, 9. doi:10.3389/fmats.2022.908952
  • Zhang, J.; Zhang, W.; Gao, P.; Sha, Z. D. Influence of Hydrogen Doping on the Atomic Structure, Mechanical Properties and Relaxation Behaviors of Metallic Glasses. SSRN Electronic Journal 2022. doi:10.2139/ssrn.4087330
  • Chupradit, S.; Raya, I.; Ngoc Huy, D. T.; Bokov, D.; Van Tuan, P.; Surendar, A.; Lafta, D. A.; Kadhim, M. M.; Kravchenko, O.; Mustafa, Y. F.; Mahmood, Z. H.; Sajjadifar, S. Role of Glass Composition on Mechanical Properties of Shape Memory Alloy-Metallic Glass Composites. Advances in Materials Science and Engineering 2021, 2021, 1–9. doi:10.1155/2021/4775793
  • Li, T.; Ma, K.; Zheng, G. The effects of glass–glass interfaces on thermodynamic and mechanical properties of Co–Fe–P metallic nano-glasses. Journal of Materials Research 2021, 36, 4951–4962. doi:10.1557/s43578-021-00429-6
  • Li, T.; Ma, K.; Zheng, G. The effects of glass–glass interfaces on thermodynamic and mechanical properties of Co–Fe–P metallic nano-glasses. Journal of Materials Research 2021, 1–12.
  • Li, T.; Shen, Y.; Zheng, G. Characterization on the glass forming ability of metallic nano-glasses by the dynamic scaling for mechanical loss in supercooled liquid state. Scripta Materialia 2021, 203, 114109. doi:10.1016/j.scriptamat.2021.114109
  • Adjaoud, O.; Albe, K. Nanoindentation of Nanoglasses Tested by Molecular Dynamics Simulations: Influence of Structural Relaxation and Chemical Segregation on the Mechanical Response. Frontiers in Materials 2021, 8, 95. doi:10.3389/fmats.2021.664220
  • Li, T.; Zheng, G. Atomistic Simulation on the Mechanical Properties of Diffusion Bonded Zr-Cu Metallic Glasses with Oxidized Interfaces. Metallurgical and Materials Transactions A 2021, 52, 1939–1946. doi:10.1007/s11661-021-06204-w
  • Yuan, S.; Branicio, P. S. Tuning the mechanical properties of nanoglass-metallic glass composites with brick and mortar designs. Scripta Materialia 2021, 194, 113639. doi:10.1016/j.scriptamat.2020.113639
  • Sharma, A.; Nandam, S. H.; Hahn, H.; Prasad, K. E. On the differences in shear band characteristics between a binary Pd-Si metallic and nanoglass. Scripta Materialia 2021, 191, 17–22. doi:10.1016/j.scriptamat.2020.09.009
  • Adjaoud, O.; Albe, K. Mechanical Properties of Glassy Nanopillars: A Comparative, Computational Study of Size Effects in Nanoglasses and Homogeneous Bulk Glasses. Frontiers in Materials 2020, 7, 352. doi:10.3389/fmats.2020.544660
  • Yuan, S.; Branicio, P. S. Gradient microstructure induced shear band constraint, delocalization, and delayed failure in CuZr nanoglasses. International Journal of Plasticity 2020, 134, 102845. doi:10.1016/j.ijplas.2020.102845
  • Cai, B.; Wang, D.; Gao, N.; Li, J.; Lai, W. S.; Liu, J.; Liu, B. X. Balancing strength and ductility of cylindrical-shaped Cu64Zr36 nanoglass via embedded Cu nanocrystals. Journal of Non-Crystalline Solids 2020, 544, 120211. doi:10.1016/j.jnoncrysol.2020.120211
  • Sha, Z.-D.; Lin, W.-H.; Poh, L. H.; Xing, G.; Liu, Z.; Wang, T.; Gao, H. Fatigue of Metallic Glasses. Applied Mechanics Reviews 2020, 72. doi:10.1115/1.4048056
  • Kalcher, C.; Adjaoud, O.; Albe, K. Creep deformation of a Cu-Zr nanoglass and interface reinforced nanoglass-composite studied by molecular dynamics simulations. Frontiers in Materials 2020, 7, 223. doi:10.3389/fmats.2020.00223
Other Beilstein-Institut Open Science Activities