Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation

Andrey V. Nomoev, Sergey P. Bardakhanov, Makoto Schreiber, Dashima G. Bazarova, Nikolai A. Romanov, Boris B. Baldanov, Bair R. Radnaev and Viacheslav V. Syzrantsev
Beilstein J. Nanotechnol. 2015, 6, 874–880. https://doi.org/10.3762/bjnano.6.89

Supporting Information

Supporting Information File 1: XRD analysis.
Format: PDF Size: 354.6 KB Download

Cite the Following Article

Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation
Andrey V. Nomoev, Sergey P. Bardakhanov, Makoto Schreiber, Dashima G. Bazarova, Nikolai A. Romanov, Boris B. Baldanov, Bair R. Radnaev and Viacheslav V. Syzrantsev
Beilstein J. Nanotechnol. 2015, 6, 874–880. https://doi.org/10.3762/bjnano.6.89

How to Cite

Nomoev, A. V.; Bardakhanov, S. P.; Schreiber, M.; Bazarova, D. G.; Romanov, N. A.; Baldanov, B. B.; Radnaev, B. R.; Syzrantsev, V. V. Beilstein J. Nanotechnol. 2015, 6, 874–880. doi:10.3762/bjnano.6.89

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Mandal, T.; Mishra, S. R.; Singh, V. Comprehensive advances in the synthesis, fluorescence mechanism and multifunctional applications of red-emitting carbon nanomaterials. Nanoscale advances 2023, 5, 5717–5765. doi:10.1039/d3na00447c
  • Dan-Iya, B. I.; Khan, A.; Shukor, M. Y. A.; Sabullah, M.; Masdor, N. A. Zero-valent iron nanoparticles for environmental Hg (II) removal: a review. PeerJ Materials Science 2023, 5, e29. doi:10.7717/peerj-matsci.29
  • Rezaei, B.; Yari, P.; Sanders, S. M.; Wang, H.; Chugh, V. K.; Liang, S.; Mostufa, S.; Xu, K.; Wang, J.-P.; Gómez-Pastora, J.; Wu, K. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. Small (Weinheim an der Bergstrasse, Germany) 2023, 20, e2304848. doi:10.1002/smll.202304848
  • Singh, K.; Aulakh, N. S.; Prakash, B. Strategic detection of food contaminants using nanoparticle‐based paper sensors. Journal of Food Safety 2023, 43. doi:10.1111/jfs.13089
  • Khadim, Y. H.; Nayef, U. M.; Mutlak, F. A.-H. Synthesis and Characterization of Core–Shell Ag:Au Nanoparticles via Seed Growth for Gas Sensor Applications. Plasmonics 2023. doi:10.1007/s11468-023-02047-w
  • El-Qelish, M.; Elgarahy, A. M.; Ibrahim, H. S.; El-Kholly, H. K.; Gad, M.; M. Ali, M. E. Multi-functional core-shell pomegranate peel amended alginate beads for phenol decontamination and bio-hydrogen production: Synthesis, characterization, and kinetics investigation. Biochemical Engineering Journal 2023, 195, 108932. doi:10.1016/j.bej.2023.108932
  • Korotcenkov, G.; Ahmad, R. G.; Guleria, P.; Kumar, V. Introduction to Biosensing. Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors; Springer International Publishing, 2023; pp 441–474. doi:10.1007/978-3-031-24000-3_17
  • Kartsonakis, I. A.; Vardakas, P.; Goulis, P.; Perkas, N.; Kyriazis, I. D.; Skaperda, Z.; Tekos, F.; Charitidis, C. A.; Kouretas, D. Toxicity assessment of core-shell and superabsorbent polymers in cell-based systems. Environmental research 2023, 228, 115772. doi:10.1016/j.envres.2023.115772
  • Kanakari, E.; Dendrinou-Samara, C. Fighting Phytopathogens with Engineered Inorganic-Based Nanoparticles. Materials (Basel, Switzerland) 2023, 16, 2388. doi:10.3390/ma16062388
  • Elkalla, E.; Khizar, S.; Tarhini, M.; Lebaz, N.; Zine, N.; Jaffrezic-Renault, N.; Errachid, A.; Elaissari, A. Core-shell micro/nanocapsules: from encapsulation to applications. Journal of microencapsulation 2023, 40, 125–156. doi:10.1080/02652048.2023.2178538
  • Bartoszewska, M.; Adamska, E.; Kowalska, A.; Grobelna, B. Novelty Cosmetic Filters Based on Nanomaterials Composed of Titanium Dioxide Nanoparticles. Molecules (Basel, Switzerland) 2023, 28, 645. doi:10.3390/molecules28020645
  • Dlamini, N. G.; Basson, A. K.; Pullabhotla, V. S. R. Synthesis and Characterization of Various Bimetallic Nanoparticles and Their Application. Applied Nano 2023, 4, 1–24. doi:10.3390/applnano4010001
  • Joshi, D. P.; Aulakh, J. S. Synthesis of ferrites-based core–shell nanostructure. Ferrite Nanostructured Magnetic Materials; Elsevier, 2023; pp 197–222. doi:10.1016/b978-0-12-823717-5.00038-3
  • Banazadeh, M.; Mohajeri, M.; Saleki, K.; Behnam, B.; Teng, Y.; Kesharwani, P.; Sahebkar, A. Aptamer-functionalized silicon nanoparticles for targeted cancer therapy. Aptamers Engineered Nanocarriers for Cancer Therapy; Elsevier, 2023; pp 237–253. doi:10.1016/b978-0-323-85881-6.00009-9
  • Septiani, E. L.; Yamashita, S.; Cao, K. L. A.; Hirano, T.; Okuda, N.; Matsumoto, H.; Enokido, Y.; Ogi, T. One-Step Aerosol Synthesis of SiO2-Coated FeNi Particles by Using Swirler Connector-Assisted Spray Pyrolysis. Industrial & Engineering Chemistry Research 2022, 61, 17885–17893. doi:10.1021/acs.iecr.2c02837
  • Yan, Y.-j.; Wei, C.; He, Y.-x.; Li, C.; Zhang, P.-x.; Li, J.-s.; Wang, J. Effect of high magnetic field on solidification microstructure evolution of a Cu-Fe immiscible alloy. China Foundry 2022, 19, 335–341. doi:10.1007/s41230-022-1243-7
  • Kędzierska, M.; Drabczyk, A.; Jamroży, M.; Kudłacik-Kramarczyk, S.; Głąb, M.; Potemski, P.; Tyliszczak, B. Iron Oxide Magnetic Nanoparticles with a Shell Made from Nanosilver-Synthesis Methodology and Characterization of Physicochemical and Biological Properties. Materials (Basel, Switzerland) 2022, 15, 4050. doi:10.3390/ma15124050
  • Lal, A.; Alam, M. K.; Ahmed, N.; Maqsood, A.; Al-Qaisi, R. K.; Shrivastava, D.; Alkhalaf, Z. A.; Alanazi, A. M.; Alshubrmi, H. R.; Sghaireen, M. G.; Srivastava, K. C. Nano Drug Delivery Platforms for Dental Application: Infection Control and TMJ Management—A Review. Polymers 2021, 13, 4175. doi:10.3390/polym13234175
  • Farahmandzadeh, F.; Molaei, M.; Karimipour, M. Ultrafast synthesis of CdTe/ZnSe semiconductor QDs by microwave method and investigation of structural, optical, and photocatalytic properties of CdTe/ZnSe QDs. Journal of Materials Science: Materials in Electronics 2021, 1–10.
  • Farahmandzadeh, F.; Molaei, M.; Karimipour, M. Ultrafast synthesis of CdTe/ZnSe semiconductor QDs by microwave method and investigation of structural, optical, and photocatalytic properties of CdTe/ZnSe QDs. Journal of Materials Science: Materials in Electronics 2021, 33, 95–104. doi:10.1007/s10854-021-07255-w
Other Beilstein-Institut Open Science Activities