Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

Anika C. Juhl, Artur Schneider, Boris Ufer, Torsten Brezesinski, Jürgen Janek and Michael Fröba
Beilstein J. Nanotechnol. 2016, 7, 1229–1240.

Supporting Information

Supporting Information contains characterization of the silica template (SEM, pXRD, nitrogen physisorption), CO2 physisorption of HCS as well as thermal analysis, SEM/EDX analysis and nitrogen physisorption of HCS/sulfur composites and derivation of Equation 3 and Equation 4.

Supporting Information File 1: Additional Information.
Format: PDF Size: 1.2 MB Download

Cite the Following Article

Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance
Anika C. Juhl, Artur Schneider, Boris Ufer, Torsten Brezesinski, Jürgen Janek and Michael Fröba
Beilstein J. Nanotechnol. 2016, 7, 1229–1240.

How to Cite

Juhl, A. C.; Schneider, A.; Ufer, B.; Brezesinski, T.; Janek, J.; Fröba, M. Beilstein J. Nanotechnol. 2016, 7, 1229–1240. doi:10.3762/bjnano.7.114

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 621.4 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhao, Z.; Su, Z.; Chen, H.; Yi, S.; Zhang, W.; Niu, B.; Zhang, Y.; Long, D. Renewable biomass-derived carbon-based hosts for lithium–sulfur batteries. Sustainable Energy & Fuels 2022, 6, 5211–5242. doi:10.1039/d2se01164f
  • Pełech, I.; Staciwa, P.; Sibera, D.; Kusiak-Nejman, E.; Morawski, A. W.; Kapica-Kozar, J.; Narkiewicz, U. The Effect of the Modification of Carbon Spheres with ZnCl2 on the Adsorption Properties towards CO2. Molecules (Basel, Switzerland) 2022, 27, 1387. doi:10.3390/molecules27041387
  • Sivaraj, J.; Bosubabu, D.; Ramesha, K. MnCo2O4 Spiny Microspheres as Polysulfide Anchors and Conversion Catalysts for High-Performance Li–S Batteries. Energy & Fuels 2022, 36, 2202–2211. doi:10.1021/acs.energyfuels.1c04095
  • Morawski, A.; Ćmielewska, K.; Witkowski, K.; Kusiak-Nejman, E.; Pełech, I.; Staciwa, P.; Ekiert, E.; Sibera, D.; Wanag, A.; Gano, M.; Narkiewicz, U. CO2 Reduction to Valuable Chemicals on TiO2-Carbon Photocatalysts Deposited on Silica Cloth. Catalysts 2021, 12, 31. doi:10.3390/catal12010031
  • Pełech, I.; Sibera, D.; Staciwa, P.; Kusiak-Nejman, E.; Kapica-Kozar, J.; Wanag, A.; Narkiewicz, U.; Morawski, A. W. ZnO/Carbon Spheres with Excellent Regenerability for Post-Combustion CO2 Capture. Materials (Basel, Switzerland) 2021, 14, 6478. doi:10.3390/ma14216478
  • van den Bergh, W.; Williams, E. R.; Vest, N. A.; Chiang, P.-H.; Stefik, M. Mesoporous TiO2 Microparticles with Tailored Surfaces, Pores, Walls, and Particle Dimensions Using Persistent Micelle Templates. Langmuir : the ACS journal of surfaces and colloids 2021, 37, 12874–12886. doi:10.1021/acs.langmuir.1c01865
  • Kazda, T.; Capková, D.; Jaššo, K.; Straková, A. F.; Shembel, E.; Markevich, A.; Sedlaříková, M. Carrageenan as an Ecological Alternative of Polyvinylidene Difluoride Binder for Li-S Batteries. Materials (Basel, Switzerland) 2021, 14, 5578. doi:10.3390/ma14195578
  • Krüger, H.; Cavers, H.; Gronenberg, O.; Schürmann, U.; Mishra, Y. K.; Jacobsen, J.; Carstensen, J.; Stock, N.; Kienle, L.; Schütt, F.; Adelung, R.; Hansen, S. Double Hierarchical 3D Carbon Nanotube Network with Tailored Structure as a Lithium Sulfur Cathode. In 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP), IEEE, 2021. doi:10.1109/nap51885.2021.9568505
  • Djuandhi, L.; Gaikwad, V.; Wang, W.; Cowie, B. C. C.; Barghamadi, M.; Sahajwalla, V.; Sharma, N. Pyrolysed coffee grounds as a conductive host agent for sulfur composite electrodes in Li–S batteries. Carbon Trends 2021, 4, 100053. doi:10.1016/j.cartre.2021.100053
  • Djuandhi, L.; Gaikwad, V.; Cowie, B. C. C.; Sahajwalla, V.; Sharma, N. Repurposing Waste Tires as Tunable Frameworks for Use in Sodium-Ion and Lithium–Sulfur Batteries. ACS Sustainable Chemistry & Engineering 2021, 9, 6972–6990. doi:10.1021/acssuschemeng.1c00502
  • Jiang, Y.-C.; Arshad, H. M. U.; Li, H.-J.; Liu, S.; Li, G.-R.; Gao, X.-P. Crystalline Multi-Metallic Compounds as Host Materials in Cathode for Lithium-Sulfur Batteries. Small (Weinheim an der Bergstrasse, Germany) 2021, 17, 2005332. doi:10.1002/smll.202005332
  • Pełech, I.; Sibera, D.; Staciwa, P.; Narkiewicz, U.; Cormia, R. D. Pressureless and Low-Pressure Synthesis of Microporous Carbon Spheres Applied to CO2 Adsorption. Molecules (Basel, Switzerland) 2020, 25, 5328. doi:10.3390/molecules25225328
  • Ning, M.; Man, Q.; Tan, G.; Lei, Z.; Li, J.; Li, R.-W. Ultrathin MoS2 Nanosheets Encapsulated in Hollow Carbon Spheres: A Case of a Dielectric Absorber with Optimized Impedance for Efficient Microwave Absorption. ACS applied materials & interfaces 2020, 12, 20785–20796. doi:10.1021/acsami.9b20433
  • Li, Z.; Xiao, Z.; Li, P.; Meng, X.; Wang, R. Enhanced Chemisorption and Catalytic Effects toward Polysulfides by Modulating Hollow Nanoarchitectures for Long-Life Lithium–Sulfur Batteries. Small (Weinheim an der Bergstrasse, Germany) 2019, 16, 1906114. doi:10.1002/smll.201906114
  • Mackiewicz, M.; Romański, J.; Drabczyk, K.; Waleka, E.; Stojek, Z.; Karbarz, M. Degradable, thermo-, pH- and redox-sensitive hydrogel microcapsules for burst and sustained release of drugs. International journal of pharmaceutics 2019, 569, 118589. doi:10.1016/j.ijpharm.2019.118589
  • Škoda, D.; Kazda, T.; Munster, L.; Hanulikova, B.; Styskalik, A.; Eloy, P.; Debecker, D. P.; Vyroubal, P.; Simonikova, L.; Kuritka, I. Microwave-assisted synthesis of a manganese metal–organic framework and its transformation to porous MnO/carbon nanocomposite utilized as a shuttle suppressing layer in lithium–sulfur batteries. Journal of Materials Science 2019, 54, 14102–14122. doi:10.1007/s10853-019-03871-4
  • Quan, T.; Goubard-Bretesché, N.; Härk, E.; Kochovski, Z.; Mei, S.; Pinna, N.; Ballauff, M.; Lu, Y. Highly Dispersible Hexagonal Carbon-MoS2 -Carbon Nanoplates with Hollow Sandwich Structures for Supercapacitors. Chemistry (Weinheim an der Bergstrasse, Germany) 2019, 25, 4757–4766. doi:10.1002/chem.201806060
  • Balakumar, K.; Packiyalakshmi, P.; Kalaiselvi, N. Bio‐Waste Derived Carbon as Interlayer and Scaffold for Li‐S Batteries. ChemistrySelect 2018, 3, 8901–8911. doi:10.1002/slct.201802051
  • Cheng, J.; Zhao, D.; Fan, L.; Wu, X.; Wang, M.; Wu, H.; Guan, B.; Zhang, N.; Sun, K. A Conductive Ni2P Nanoporous Composite with a 3D Structure Derived from a Metal–Organic Framework for Lithium–Sulfur Batteries. Chemistry (Weinheim an der Bergstrasse, Germany) 2018, 24, 13253–13258. doi:10.1002/chem.201801939
  • Mo, Y.-X.; Jiang, Y.; Lin, J.-X.; Zhou, Y.; Li, J.-T.; Wu, Q.-H.; Huang, L.; Liao, H.-G.; Sun, S.-G. Sulfur Microspheres Encapsulated in Porous Silver‐Based Shell with Superior Performance for Lithium‐Sulfur Batteries. ChemElectroChem 2018, 5, 1683–1690. doi:10.1002/celc.201800337
Other Beilstein-Institut Open Science Activities