Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples

Christa Genslein, Peter Hausler, Eva-Maria Kirchner, Rudolf Bierl, Antje J. Baeumner and Thomas Hirsch
Beilstein J. Nanotechnol. 2016, 7, 1564–1573.

Supporting Information

Figure S1: Respective size distribution analysis of the particles; Figure S2: Time dependence of the particle diameter reduction; Table S3: Fitting parameter for the interaction of DEP with rGO on various substrates.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 346.5 KB Download

Cite the Following Article

Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples
Christa Genslein, Peter Hausler, Eva-Maria Kirchner, Rudolf Bierl, Antje J. Baeumner and Thomas Hirsch
Beilstein J. Nanotechnol. 2016, 7, 1564–1573.

How to Cite

Genslein, C.; Hausler, P.; Kirchner, E.-M.; Bierl, R.; Baeumner, A. J.; Hirsch, T. Beilstein J. Nanotechnol. 2016, 7, 1564–1573. doi:10.3762/bjnano.7.150

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 527.5 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Aşır, S.; Uğur, B.; Jalilzadeh, M.; Göktürk, I.; Türkmen, D. Development of a Plasmonic Sensor for a Chemotherapeutic Agent Cabazitaxel. ACS omega 2022, 8, 492–501. doi:10.1021/acsomega.2c05327
  • Wunderlich, L.; Hirsch, T. Current challenges in nanomaterial-based sensors for online monitoring of drinking water by surface plasmon resonance. Current Opinion in Environmental Science & Health 2022, 26, 100326. doi:10.1016/j.coesh.2022.100326
  • Onodera, T.; Mieda, K.; Taniguchi, K. Fabrication of Mask by Drag Coating Convective Self-Assembly in Nanosphere Lithography for Nanohole Array. IEEJ Transactions on Sensors and Micromachines 2022, 142, 15–16. doi:10.1541/ieejsmas.142.15
  • Vestri, A.; Rippa, M.; Marchesano, V.; Sagnelli, D.; Margheri, G.; Zhou, J.; Petti, L. LSPR immuno-sensing based on iso-Y nanopillars for highly sensitive and specific imidacloprid detection. Journal of materials chemistry. B 2021, 9, 9153–9161. doi:10.1039/d1tb01344k
  • Wunderlich, L.; Hausler, P.; Märkl, S.; Bierl, R.; Hirsch, T. Nanoparticle Determination in Water by LED-Excited Surface Plasmon Resonance Imaging. Chemosensors 2021, 9, 175. doi:10.3390/chemosensors9070175
  • Écija-Arenas, Á.; Kirchner, E.-M.; Hirsch, T.; Fernández-Romero, J. M. Development of an aptamer-based SPR-biosensor for the determination of kanamycin residues in foods. Analytica chimica acta 2021, 1169, 338631. doi:10.1016/j.aca.2021.338631
  • Prakash, G.; Srivastava, R. K.; Gupta, S. N.; Sood, A. K. Plasmon-induced efficient hot carrier generation in graphene on gold ultrathin film with periodic array of holes: Ultrafast pump-probe spectroscopy. The Journal of chemical physics 2019, 151, 234712. doi:10.1063/1.5117882
  • Noor, N.; Mutalik, S.; Younas, M. W.; Chan, C. Y.; Thakur, S.; Wang, F.; Yao, M.; Mou, Q.; Leung, P. H. Durable Antimicrobial Behaviour from Silver-Graphene Coated Medical Textile Composites. Polymers 2019, 11, 2000. doi:10.3390/polym11122000
  • Li, Q.; Dou, X.; Zhang, L.; Zhao, X.; Luo, J.; Yang, M. Oriented assembly of surface plasmon resonance biosensor through staphylococcal protein A for the chlorpyrifos detection. Analytical and bioanalytical chemistry 2019, 411, 6057–6066. doi:10.1007/s00216-019-01990-0
  • Li, Q.; Dou, X.; Zhao, X.; Zhang, L.; Luo, J.; Xing, X.; Yang, M. A gold/Fe3O4 nanocomposite for use in a surface plasmon resonance immunosensor for carbendazim. Mikrochimica acta 2019, 186, 313. doi:10.1007/s00604-019-3402-0
  • Hausler, P.; Wunderlich, L.; Fischer, J.; Pfab, C.; Heckscher, S.; Hirsch, T.; Bierl, R. Surface plasmon resonance imaging for detection of drug metabolites in water. In Optical Sensors 2019, SPIE, 2019; pp 148–158. doi:10.1117/12.2522324
  • Hausler, P.; Roth, C.; Vitzthumecker, T.; Bierl, R. Miniaturized Surface Plasmon Resonance Based Sensor Systems—Opportunities and Challenges. Springer Series in Optical Sciences; Springer International Publishing, 2019; pp 169–195. doi:10.1007/978-3-030-30113-2_8
  • Quispe, L. T.; Menezes, J. W.; Chong, W.; Zegarra, L. B. R.; Armas, L. E. G. Influence of gold nanoholes and nanoslits arrays on Raman spectra and optical reflectance of graphene oxide. Optics express 2018, 26, 31253–31263. doi:10.1364/oe.26.031253
  • Tang, M.; Yongfeng, W.; Dongli, D.; Wei, J.; Zhang, J.; Yang, D.; Li, G. Development of an optical fiber immunosensor for the rapid and sensitive detection of phthalate esters. Sensors and Actuators B: Chemical 2018, 258, 304–312. doi:10.1016/j.snb.2017.11.120
  • Scherbahn, V.; Nizamov, S.; Mirsky, V. M. Toward Ultrasensitive Surface Plasmon Resonance Sensors. Springer Series on Chemical Sensors and Biosensors; Springer International Publishing, 2018; pp 409–448. doi:10.1007/5346_2017_21
  • Wang, Y.; Zhou, J.; Li, J. Construction of Plasmonic Nano-Biosensor-Based Devices for Point-of-Care Testing. Small Methods 2017, 1, 1700197. doi:10.1002/smtd.201700197
  • Rippa, M.; Castagna, R.; Tkachenko, V.; Zhou, J.; Petti, L. Engineered nanopatterned substrates for high-sensitive localized surface plasmon resonance: an assay on biomacromolecules. Journal of materials chemistry. B 2017, 5, 5473–5478. doi:10.1039/c7tb00777a
  • Genslein, C.; Hausler, P.; Kirchner, E.-M.; Bierl, R.; Baeumner, A. J.; Hirsch, T. Detection of small molecules with surface plasmon resonance by synergistic plasmonic effects of nanostructured surfaces and graphene. SPIE Proceedings 2017, 10080, 59–65. doi:10.1117/12.2252256
  • Gomez, C. V.; Pisarra, M.; Gravina, M.; Riccardi, P.; Sindona, A. Plasmon properties and hybridization effects in silicene. Physical Review B 2017, 95, 085419. doi:10.1103/physrevb.95.085419
Other Beilstein-Institut Open Science Activities