Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles

Sylwia Kuśnieruk, Jacek Wojnarowicz, Agnieszka Chodara, Tadeusz Chudoba, Stanislaw Gierlotka and Witold Lojkowski
Beilstein J. Nanotechnol. 2016, 7, 1586–1601. https://doi.org/10.3762/bjnano.7.153

Cite the Following Article

Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles
Sylwia Kuśnieruk, Jacek Wojnarowicz, Agnieszka Chodara, Tadeusz Chudoba, Stanislaw Gierlotka and Witold Lojkowski
Beilstein J. Nanotechnol. 2016, 7, 1586–1601. https://doi.org/10.3762/bjnano.7.153

How to Cite

Kuśnieruk, S.; Wojnarowicz, J.; Chodara, A.; Chudoba, T.; Gierlotka, S.; Lojkowski, W. Beilstein J. Nanotechnol. 2016, 7, 1586–1601. doi:10.3762/bjnano.7.153

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 925.1 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Glavinskaya, V.; Syukkalova, E.; Voskanyan, L.; Osmolowsky, M.; Bobrysheva, N.; Noskov, B.; Voznesenskiy, M.; Osmolovskaya, O. Fabrication of HAp nanoparticles with different morphology: oriented attachment process, thermal properties, and energy-effective ceramics production. Ceramics International 2025. doi:10.1016/j.ceramint.2025.10.172
  • Kostadinov, M.; Angelova, N.; Yordanov, G. Characteristics and protein adsorption properties of calcium phosphate suspensions obtained by heat-induced transformations of brushite adjuvant at variable precursors molar ratio. Journal of Materials Science 2025, 60, 15551–15566. doi:10.1007/s10853-025-11423-2
  • Acharya, R.; Dutta, S. D.; Patil, T. V.; Kim, H.; Jeon, M.; Seol, Y.; Randhawa, A.; Lim, K. 3D‐printed magnesium/nanodiamond dual‐doped hydroxyapatite composite hydrogels with antibacterial and in vitro bioactive properties for bone tissue engineering. Journal of the American Ceramic Society 2025, 108. doi:10.1111/jace.70121
  • Ardan, L.; Yusuf, Y. Polycaprolactone (PCL)/Potato Starch (PS) Nanofiber Scaffolds Combined With Carbonate‐Hydroxyapatite (CHA) for Bone Tissue Engineering. Journal of Applied Polymer Science 2025, 142. doi:10.1002/app.57507
  • Gupta, K.; Kaushik, N.; Sharma, V.; Singh, A. A review on innovations in hydroxyapatite: advancing sustainable and multifunctional dental implants. Odontology 2025, 113, 1330–1342. doi:10.1007/s10266-025-01096-3
  • Abbasi, M.; Rashnavadi, M.; Gholami, M.; Molaei, S. Antibacterial property of hydroxyapatite extracted from biological sources and doped with Cu2+ and Ag+ by Sol-gels method. Scientific reports 2025, 15, 12101. doi:10.1038/s41598-025-89886-1
  • Yücel, M.; Alımlı, N.; Demir, N. Y.; Cura, H. Plume Particle Ejecta Can Trace Habitat-forming Gradients in Ocean Worlds: Insights from Planet Earth Geochemistry. The Planetary Science Journal 2025, 6, 104. doi:10.3847/psj/adc3f2
  • Habiburrohman, M. R.; Jamilludin, M. A.; Cahyati, N.; Herdianto, N.; Yusuf, Y. Fabrication and in vitro cytocompatibility evaluation of porous bone scaffold based on cuttlefish bone-derived nano-carbonated hydroxyapatite reinforced with polyethylene oxide/chitosan fibrous structure. RSC advances 2025, 15, 5135–5150. doi:10.1039/d4ra08457h
  • Deng, W.; Guo, R.; Wang, G.; Zeng, Z.; Ren, T.; Pan, S. Exploiting the interfacial instability of liquid-infused Janus membranes for versatile liquid gating. Journal of colloid and interface science 2025, 686, 578–588. doi:10.1016/j.jcis.2025.01.255
  • Coibion, D.; Berardo, L.; Somers, N.; Cloots, R.; Schrijnemakers, A.; Boschini, F. Oxidative hydrothermal treatment of bovine bones: A lower CO2 emission process to obtain high specific surface area hydroxyapatite. Journal of environmental management 2025, 375, 124299. doi:10.1016/j.jenvman.2025.124299
  • Cheng, C.-H.; Chen, W.-C.; Yang, W.-C.; Yang, S.-C.; Liu, S.-M.; Chen, Y.-S.; Chen, J.-C. Unidirectional Polyvinylidene/Copper-Impregnated Nanohydroxyapatite Composite Membrane Prepared by Electrospinning with Piezoelectricity and Biocompatibility for Potential Ligament Repair. Polymers 2025, 17, 185. doi:10.3390/polym17020185
  • Islam, M. A.; Hossain, N.; Hossain, S.; Khan, F.; Hossain, S.; Arup, M. M. R.; Chowdhury, M. A.; Rahman, M. M. Advances of Hydroxyapatite Nanoparticles in Dental Implant Applications. International dental journal 2025, 75, 2272–2313. doi:10.1016/j.identj.2024.11.020
  • Prakash, M.; Rajan, H. K.; Chandraprabha, M. N.; Shetty, S.; Mukherjee, T.; Girish Kumar, S. Recent developments in green synthesis of hydroxyapatite nanocomposites: relevance to biomedical and environmental applications. Green Chemistry Letters and Reviews 2024, 17. doi:10.1080/17518253.2024.2422409
  • Arnau, M.; Sans, J.; Tamarit, J. L.; Romanini, M.; Turon, P.; Alemán, C. Unraveling Thermal Depolarization Phenomena in Biphasic Polarized Calcium Phosphate Catalyst. Advanced Materials Interfaces 2024, 11. doi:10.1002/admi.202400422
  • Najmi, H.; Singh, R. P. A Review on Synthesis, Characterisation, and Applications of Hydroxyapatite Nanoparticles. Lecture Notes in Mechanical Engineering; Springer Nature Singapore, 2024; pp 703–720. doi:10.1007/978-981-97-3173-2_49
  • Kula, Z.; Klimek, L.; Dąbrowska, K.; Neves, C. B.; Roque, J. C. Selected Mechanical Properties of Dental Hybrid Composite with Fluorine, Hydroxyapatite and Silver Fillers. Journal of Composites Science 2024, 8, 232. doi:10.3390/jcs8060232
  • Mohamad Nor, N.; Ramli, N. H.; Zakaria, N. D.; Abu Bakar, A. H.; Abdul Razak, K. Preparation of Nanomaterials-Based Sensors. Handbook of Nanosensors; Springer Nature Switzerland, 2024; pp 39–67. doi:10.1007/978-3-031-47180-3_3
  • Meenakshi, S. V.; Muthupriya, P.; Kanchana, G.; Kishorkumar, S.; Yogeshkanna, M.; Shakinkathu, N.; Sivakumar, K. Fish scale and eggshell conversion into hydroxyapatite: a route to dentistry treatment. Applied Physics A 2024, 130. doi:10.1007/s00339-024-07597-2
  • Goldberg, M. A.; Donskaya, N. O.; Valeev, D. V.; Fomin, A. S.; Murzakhanov, F. F.; Leonov, A. V.; Konovalov, A. A.; Antonova, O. S.; Shoppert, A. A.; Kudryavtsev, E. A.; Gafurov, M. R.; Barinov, S. M.; Komlev, V. S. Mesoporous molybdate-substituted hydroxyapatite nanopowders obtained via a hydrothermal route. Ceramics International 2024, 50, 17404–17418. doi:10.1016/j.ceramint.2024.02.229
  • Kawsar, M.; Sahadat Hossain, M.; Alam, M. K.; Bahadur, N. M.; Shaikh, M. A. A.; Ahmed, S. Synthesis of pure and doped nano-calcium phosphates using different conventional methods for biomedical applications: a review. Journal of materials chemistry. B 2024, 12, 3376–3391. doi:10.1039/d3tb02846a
Other Beilstein-Institut Open Science Activities