Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles

Sylwia Kuśnieruk, Jacek Wojnarowicz, Agnieszka Chodara, Tadeusz Chudoba, Stanislaw Gierlotka and Witold Lojkowski
Beilstein J. Nanotechnol. 2016, 7, 1586–1601. https://doi.org/10.3762/bjnano.7.153

Cite the Following Article

Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles
Sylwia Kuśnieruk, Jacek Wojnarowicz, Agnieszka Chodara, Tadeusz Chudoba, Stanislaw Gierlotka and Witold Lojkowski
Beilstein J. Nanotechnol. 2016, 7, 1586–1601. https://doi.org/10.3762/bjnano.7.153

How to Cite

Kuśnieruk, S.; Wojnarowicz, J.; Chodara, A.; Chudoba, T.; Gierlotka, S.; Lojkowski, W. Beilstein J. Nanotechnol. 2016, 7, 1586–1601. doi:10.3762/bjnano.7.153

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 925.1 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kawsar, M.; Sahadat Hossain, M.; Alam, M. K.; Bahadur, N. M.; Shaikh, M. A. A.; Ahmed, S. Synthesis of pure and doped nano-calcium phosphates using different conventional methods for biomedical applications: a review. Journal of materials chemistry. B 2024. doi:10.1039/d3tb02846a
  • Goldberg, M. A.; Donskaya, N. O.; Valeev, D. V.; Fomin, A. S.; Murzakhanov, F. F.; Leonov, A. V.; Konovalov, A. A.; Antonova, O. S.; Shoppert, A. A.; Kudryavtsev, E. A.; Gafurov, M. R.; Barinov, S. M.; Komlev, V. S. Mesoporous molybdate-substituted hydroxyapatite nanopowders obtained via a hydrothermal route. Ceramics International 2024. doi:10.1016/j.ceramint.2024.02.229
  • Mohamad Nor, N.; Ramli, N. H.; Zakaria, N. D.; Abu Bakar, A. H.; Abdul Razak, K. Preparation of Nanomaterials-Based Sensors. Handbook of Nanosensors; Springer Nature Switzerland, 2023; pp 1–29. doi:10.1007/978-3-031-16338-8_3-1
  • Jamilludin, M. A.; Dinatha, I. K. H.; Supii, A. I.; Partini, J.; Kusindarta, D. L.; Yusuf, Y. Functionalized cellulose nanofibrils in carbonate-substituted hydroxyapatite nanorod-based scaffold from long-spined sea urchin (Diadema setosum) shells reinforced with polyvinyl alcohol for alveolar bone tissue engineering. RSC advances 2023, 13, 32444–32456. doi:10.1039/d3ra06165e
  • Alsharif, S. A.; Badran, M. I.; Moustafa, M. H.; Meshref, R. A.; Mohamed, E. I. Hydrothermal extraction and physicochemical characterization of biogenic hydroxyapatite nanoparticles from buffalo waste bones for in vivo xenograft in experimental rats. Scientific reports 2023, 13, 17490. doi:10.1038/s41598-023-43989-9
  • Szałaj, U.; Chodara, A.; Gierlotka, S.; Wojnarowicz, J.; Łojkowski, W. Enhanced Release of Calcium Ions from Hydroxyapatite Nanoparticles with an Increase in Their Specific Surface Area. Materials (Basel, Switzerland) 2023, 16, 6397. doi:10.3390/ma16196397
  • Murugan, L.; Kim, S.-M.; Rajesh, A.; Arunachalam, K.; Davoodbasha, M.; Kim, J.-W.; Lee, S.-Y. Synthesis and Characterization of Hydroxyapatite/Silver Nanoparticles Composites and Their Antibacterial Properties for Dental Filling Application. BioNanoScience 2023, 13, 2215–2224. doi:10.1007/s12668-023-01188-w
  • Sedky, A.; Hakamy, A.; Afify, N.; Bouhmaidi, S.; Setti, L.; Hamad, D.; Abd-Elnaiem, A. M. Comparative investigation of structural, photoluminescence, and magnetic characteristics of MxSn1−xOy nanocomposites. Applied Physics A 2023, 129. doi:10.1007/s00339-023-06941-2
  • Modwi, A.; Elamin, N. Y.; Al-Ayed, A. S.; Ismail, M.; Taha, K. K. Pb(II) ions removal via green spinel NiFe2O4 loaded on g-C3N4 nanomaterials. Nano-Structures & Nano-Objects 2023, 35, 101031. doi:10.1016/j.nanoso.2023.101031
  • Kontogianni, G.-I.; Coelho, C.; Gauthier, R.; Fiorilli, S.; Quadros, P.; Vitale-Brovarone, C.; Chatzinikolaidou, M. Osteogenic Potential of Nano-Hydroxyapatite and Strontium-Substituted Nano-Hydroxyapatite. Nanomaterials (Basel, Switzerland) 2023, 13, 1881. doi:10.3390/nano13121881
  • Chaudhary, S.; Avinashi, S. K.; Rao, J.; Gautam, C. Recent Advances in Additive Manufacturing, Applications and Challenges for Dentistry: A Review. ACS biomaterials science & engineering 2023, 9, 3987–4019. doi:10.1021/acsbiomaterials.2c01561
  • Szterner, P.; Antosik, A.; Pagacz, J.; Tymowicz-Grzyb, P. Morphology Control of Hydroxyapatite as a Potential Reinforcement for Orthopedic Biomaterials: The Hydrothermal Process. Crystals 2023, 13, 793. doi:10.3390/cryst13050793
  • Łojkowski, M.; Walejewska, E.; Sosnowska, M.; Opalińska, A.; Grubczak, K.; Jaworski, S.; Moniuszko, M.; Swieszkowski, W. Design of polymeric thin films with nanovolcanoes for trapping hydroxyapatite nanoparticles to promote or inhibit cell proliferation. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2868379/v3
  • Łojkowski, M.; Walejewska, E.; Sosnowska, M.; Opalińska, A.; Grubczak, K.; Jaworski, S.; Moniuszko, M.; Swieszkowski, W. Design of polymeric thin films with nanovolcanoes for trapping hydroxyapatite nanoparticles to promote or inhibit cell proliferation. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2868379/v1
  • Łojkowski, M.; Walejewska, E.; Sosnowska, M.; Opalińska, A.; Grubczak, K.; Jaworski, S.; Moniuszko, M.; Swieszkowski, W. Design of polymeric thin films with nanovolcanoes for trapping hydroxyapatite nanoparticles to promote or inhibit cell proliferation. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2868379/v2
  • Verma, R.; Mishra, S. R.; Gadore, V.; Ahmaruzzaman, M. Hydroxyapatite-based composites: Excellent materials for environmental remediation and biomedical applications. Advances in colloid and interface science 2023, 315, 102890. doi:10.1016/j.cis.2023.102890
  • Khalid, A.; Zulfiqar, S.; Tabassum, N.; Khan, A. S.; Abid, M. A.; Akhtar, M. S.; Al-Misned, F.; Aljuwayid, A. M.; Zahmatkesh, S.; Asif, S. Biocompatible cellulose acetate supported ammonium based ionic liquid membranes; way forward to remediate water pollution. Chemosphere 2023, 322, 138151. doi:10.1016/j.chemosphere.2023.138151
  • Priyadharshee, M.; Preetha, R. Fabrication and characterization of gelatin-based nanocomposite edible film prepared from eggshell with anthocyanin as pH indicator to assure quality of food. Journal of food science and technology 2023, 60, 1389–1401. doi:10.1007/s13197-023-05685-4
  • Paramasivan, M.; Sampath Kumar, T.; Kanniyappan, H.; Muthuvijayan, V.; Chandra, T. Microbial biomineralization of hydroxyapatite nanocrystals using Bacillus tequilensis. Ceramics International 2023, 49, 5621–5629. doi:10.1016/j.ceramint.2022.10.138
  • MubarakAli, D.; Arunachalam, K.; Lakshmanan, M.; Badar, B.; Kim, J.-W.; Lee, S.-Y. Unveiling the Anti-Biofilm Property of Hydroxyapatite on Pseudomonas aeruginosa: Synthesis and Strategy. Pharmaceutics 2023, 15, 463. doi:10.3390/pharmaceutics15020463
Other Beilstein-Institut Open Science Activities