A new approach to grain boundary engineering for nanocrystalline materials

Shigeaki Kobayashi, Sadahiro Tsurekawa and Tadao Watanabe
Beilstein J. Nanotechnol. 2016, 7, 1829–1849. https://doi.org/10.3762/bjnano.7.176

Cite the Following Article

A new approach to grain boundary engineering for nanocrystalline materials
Shigeaki Kobayashi, Sadahiro Tsurekawa and Tadao Watanabe
Beilstein J. Nanotechnol. 2016, 7, 1829–1849. https://doi.org/10.3762/bjnano.7.176

How to Cite

Kobayashi, S.; Tsurekawa, S.; Watanabe, T. Beilstein J. Nanotechnol. 2016, 7, 1829–1849. doi:10.3762/bjnano.7.176

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.4 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Mirzaei, A.; Hodgson, P. D.; Ma, X.; Peterson, V. K.; Farabi, E.; Rohrer, G. S.; Beladi, H. The role of parent austenite grain size on the variant selection and intervariant boundary network in a lath martensitic steel. Materials Science and Engineering: A 2024, 889, 145793. doi:10.1016/j.msea.2023.145793
  • Das, A. Fracture complexions of a nanocrystalline microstructure. Applied Physics A 2023, 129. doi:10.1007/s00339-023-06913-6
  • Zhang, Z.; Huang, Q.; Zhou, H. High-entropy alloy nanocrystals with low-angle grain boundary for superb plastic deformability and recoverability. International Journal of Plasticity 2023, 167, 103679. doi:10.1016/j.ijplas.2023.103679
  • Geiger, I.; Luo, J.; Lavernia, E. J.; Cao, P.; Apelian, D.; Rupert, T. J. Influence of chemistry and structure on interfacial segregation in NbMoTaW with high-throughput atomistic simulations. Journal of Applied Physics 2022, 132. doi:10.1063/5.0130402
  • Sankar, B.; Vinay, C.; Vishnu, J.; Shankar, K. V.; Gokul Krishna, G. P.; Govind, V.; Jayakrishna, A. J. Focused Review on Cu–Ni–Sn Spinodal Alloys: From Casting to Additive Manufacturing. Metals and Materials International 2022, 29, 1203–1228. doi:10.1007/s12540-022-01305-6
  • Chiba, R.; Kansuwan, P. Grain Boundary Plane Rotation Analysis for FCC Bicrystal Structures Using MD Simulation. International Journal of Computational Materials Science and Engineering 2021, 11. doi:10.1142/s2047684121500299
  • Fu, H.; Chen, X.; Wang, W.; Pia, G.; Zhang, J.; Li, J. Statistical study on the effects of heterogeneous deformation and grain boundary character on hydrogen-induced crack initiation and propagation in twining-induced plasticity steels. Corrosion Science 2021, 192, 109796. doi:10.1016/j.corsci.2021.109796
  • Fu, L.; Li, B.; Xu, G.; Huang, J.; Engqvist, H.; Xia, W. Size-driven phase transformation and microstructure evolution of ZrO2 nanocrystallites associated with thermal treatments. Journal of the European Ceramic Society 2021, 41, 5624–5633. doi:10.1016/j.jeurceramsoc.2021.04.058
  • Inoue, K.; Roh, J. Y.; Kawahara, K.; Saito, M.; Kotani, M.; Ikuhara, Y. Arrangement of polyhedral units for [0001]-symmetrical tilt grain boundaries in zinc oxide. Acta Materialia 2021, 212, 116864. doi:10.1016/j.actamat.2021.116864
  • Pham, A. H.; Fukunaga, N.; Yeh, W.; Morito, S.; Ohba, T. Rapid annealing of Au thin films by micron chevron-shaped laser beam scanning toward growth of single-grain crystal. Japanese Journal of Applied Physics 2021, 60, SBBK06. doi:10.35848/1347-4065/abdf22
  • Inoue, K.; Kawahara, K.; Saito, M.; Kotani, M.; Ikuhara, Y. 3D arrangement of atomic polyhedra in tilt grain boundaries. Acta Materialia 2021, 202, 266–276. doi:10.1016/j.actamat.2020.10.017
  • Hemmendinger, K. D.; Bahena, J. A.; Hodge, A. M. Characterization of Grain Boundary‐Engineered Aluminum–Magnesium Alloys. Advanced Engineering Materials 2020, 23, 2000813. doi:10.1002/adem.202000813
  • Darinskiy, B. M.; Efanova, N. D.; Prizhimov, A. S. Structure of the Special Intercrystalline Boundaries in Two Component Crystals. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 2019, 21, 498–504. doi:10.17308/kcmf.2019.21/2361
  • Lee, S.; Tam, J.; Li, W.; Yu, B.; Cho, H. J.; Samei, J.; Wilkinson, D.; Choe, H.; Erb, U. Multi-scale morphological characterization of Ni foams with directional pores. Materials Characterization 2019, 158, 109939. doi:10.1016/j.matchar.2019.109939
  • Zschiesche, H.; Campos, A.; Dominici, C.; Roussel, L.; Charaï, A.; Mangelinck, D.; Alfonso, C. Correlated TKD/EDS - TEM - APT analysis on selected interfaces of CoSi2 thin films. Ultramicroscopy 2019, 206, 112807. doi:10.1016/j.ultramic.2019.06.007
  • Maharana, H.; Bishoyi, B.; Basu, A. Current density dependent microstructure and texture evolution and related effects on properties of electrodeposited Ni-Al coating. Journal of Alloys and Compounds 2019, 787, 483–494. doi:10.1016/j.jallcom.2019.02.096
  • Kolaklieva, L.; Chitanov, V.; Szekeres, A.; Antonova, K.; Terziyska, P.; Fogarassy, Z.; Petrik, P.; Mihailescu, I. N.; Duta, L. Pulsed laser deposition of aluminum nitride films: Correlation between mechanical, optical, and structural properties. Coatings 2019, 9, 195. doi:10.3390/coatings9030195
  • Zhang, Y.; Feng, X.; Song, C.; Wang, H.; Yang, B.; Wang, Z. Quantification of grain boundary connectivity for predicting intergranular corrosion resistance in BFe10-1-1 copper-nickel alloy. MRS Communications 2019, 9, 251–257. doi:10.1557/mrc.2018.211
  • Emeis, F.; Leuthold, J.; Spangenberg, K.; Peterlechner, M.; Wilde, G. Characterization of Special Grain Boundaries and Triple Junctions in CuxNi1‐x Alloys upon Deformation and Annealing. Advanced Engineering Materials 2019, 21, 1801214. doi:10.1002/adem.201801214
  • Bober, D. B.; LaGrange, T.; Kumar, M.; Rupert, T. J. Pronounced grain boundary network evolution in nanocrystalline Cu subjected to large cyclic strains. Journal of Materials Research 2018, 34, 35–47. doi:10.1557/jmr.2018.334
Other Beilstein-Institut Open Science Activities