Supporting Information
Supporting Information features the orientations of G9 fragments used to calculate the energies of Table 2 as well as a complete table of orbital energies for the molecules shown in Figure 6 and Figure 7 for both the optimized and planar geometries.
| Supporting Information File 1: Additional computational data. | ||
| Format: PDF | Size: 175.2 KB | Download |
Cite the Following Article
Effects of electronic coupling and electrostatic potential on charge transport in carbon-based molecular electronic junctions
Richard L. McCreery
Beilstein J. Nanotechnol. 2016, 7, 32–46.
https://doi.org/10.3762/bjnano.7.4
How to Cite
McCreery, R. L. Beilstein J. Nanotechnol. 2016, 7, 32–46. doi:10.3762/bjnano.7.4
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 539.0 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Bâldea, I. Can tunneling current in molecular junctions be so strongly temperature dependent to challenge a hopping mechanism? Analytical formulas answer this question and provide important insight into large area junctions. Physical chemistry chemical physics : PCCP 2024, 26, 6540–6556. doi:10.1039/d3cp05046g
- Moreira, A. C. L.; de Melo, C. P. Deviations and similarities between landauer's approach and the multi-electronic classical master equation in describing nanoscale transport. Physica Scripta 2023, 98, 95953–095953. doi:10.1088/1402-4896/acef6c
- Bâldea, I. Can room-temperature data for tunneling molecular junctions be analyzed within a theoretical framework assuming zero temperature?. Physical chemistry chemical physics : PCCP 2023, 25, 19750–19763. doi:10.1039/d3cp00740e
- Fisher, J. M.; O'Connor, J. P.; Brown, P. J.; Kim, T.; Lorenzo, E. R.; Young, R. M.; Wasielewski, M. R. Two-Dimensional Electronic Spectroscopy Reveals Vibrational Modes Coupled to Charge Transfer in a Julolidine-BODIPY Dyad. The journal of physical chemistry. A 2023, 127, 2946–2957. doi:10.1021/acs.jpca.3c01122
- Bâldea, I. Estimating the Number of Molecules in Molecular Junctions Merely Based on the Low Bias Tunneling Conductance at Variable Temperature. International journal of molecular sciences 2022, 23, 14985. doi:10.3390/ijms232314985
- Harris, S. J.; Richardson, C.; Mapley, J. I.; Wagner, P.; Gordon, K. C. Investigation of the Geometric and Spectroscopic Properties of Four Twisted Triphenylpyridinium Donor-Acceptor Dyes. The journal of physical chemistry. A 2022, 126, 5681–5691. doi:10.1021/acs.jpca.2c03380
- Moreira, A.; de Melo, C.; Cabrera-Tinoco, H. Transport through a biphenyl system as a function of torsion angle: An effective coupling model approach. Computational and Theoretical Chemistry 2022, 1214, 113756. doi:10.1016/j.comptc.2022.113756
- Li, X.; Miu, J.; An, M.; Mei, J.; Zheng, F.; Jiang, J.; Wang, H.; Huang, Y.; Li, Q. Preparation of graphene/copper composites with a thiophenol molecular junction for thermal conduction application. New Journal of Chemistry 2022, 46, 10107–10116. doi:10.1039/d2nj00374k
- Bâldea, I. Exact Analytic Formula for Conductance Predicting a Tunable Sommerfeld–Arrhenius Thermal Transition within a Single‐Step Tunneling Mechanism in Molecular Junctions Subject to Mechanical Stretching. Advanced Theory and Simulations 2022, 5. doi:10.1002/adts.202200158
- Moreira, A. C. L.; de Melo, C.; Marques, L. Electronic transport through a biphenyl system as a function of torsion angle with a complex absorbing potential to model the self-energy in a scattering approach. Journal of Physics D: Applied Physics 2021, 55, 055306. doi:10.1088/1361-6463/ac2f17
- Nazmutdinov, R. R.; Ulstrup, J. Atomic‐Scale Modelling of Electrochemical Systems; Wiley, 2021; pp 25–91. doi:10.1002/9781119605652.ch2
- dos Santos, J. M.; Neophytou, M.; Wiles, A. A.; Howells, C. T.; Ashraf, R. S.; McCulloch, I.; Cooke, G. Influence of alkyne spacers on the performance of thiophene-based donors in bulk-heterojunction organic photovoltaic cells. Dyes and Pigments 2021, 188, 109152. doi:10.1016/j.dyepig.2021.109152
- Saadatmand, M.; Shahabodini, A.; Ahmadi, B.; Chegini, S. N. Nonlinear forced vibrations of initially curved rectangular single layer graphene sheets: An analytical approach. Physica E: Low-dimensional Systems and Nanostructures 2021, 127, 114568. doi:10.1016/j.physe.2020.114568
- Faber, J.; Antoneli, P. C.; Araújo, N. S.; Pinheiro, D. J. L. L.; Cavalheiro, E. A. Critical Elements for Connectivity Analysis of Brain Networks. Brain Informatics and Health; Springer Singapore, 2020; pp 67–107. doi:10.1007/978-981-15-6883-1_4
- Bâldea, I. Important issues related to the law of corresponding states for the charge transport in molecular junctions with graphene electrodes. Organic Electronics 2017, 49, 19–23. doi:10.1016/j.orgel.2017.06.039
- Sui, W.; Li, Y.; Li, J.-C. Temperature dependent electron transport in oligo (3-methylthiophene) derivative molecular devices. Organic Electronics 2017, 47, 1–8. doi:10.1016/j.orgel.2017.04.031
- Bâldea, I. Protocol for disentangling the thermally activated contribution to the tunneling-assisted charge transport. Analytical results and experimental relevance. Physical chemistry chemical physics : PCCP 2017, 19, 11759–11770. doi:10.1039/c7cp01103b
- Najarian, A. M.; McCreery, R. L. Structure Controlled Long-Range Sequential Tunneling in Carbon-Based Molecular Junctions. ACS nano 2017, 11, 3542–3552. doi:10.1021/acsnano.7b00597
- Van Dyck, C.; Ratner, M. A. Molecular Junctions: Control of the Energy Gap Achieved by a Pinning Effect. The Journal of Physical Chemistry C 2017, 121, 3013–3024. doi:10.1021/acs.jpcc.6b07855
- Lütgebaucks, C.; Gonella, G.; Roke, S. Optical label-free and model-free probe of the surface potential of nanoscale and microscopic objects in aqueous solution. Physical Review B 2016, 94, 195410. doi:10.1103/physrevb.94.195410