In situ observation of deformation processes in nanocrystalline face-centered cubic metals

Aaron Kobler, Christian Brandl, Horst Hahn and Christian Kübel
Beilstein J. Nanotechnol. 2016, 7, 572–580. https://doi.org/10.3762/bjnano.7.50

Supporting Information

Supporting Information File 1: Additional experimental results.
Format: PDF Size: 11.4 MB Download

Cite the Following Article

In situ observation of deformation processes in nanocrystalline face-centered cubic metals
Aaron Kobler, Christian Brandl, Horst Hahn and Christian Kübel
Beilstein J. Nanotechnol. 2016, 7, 572–580. https://doi.org/10.3762/bjnano.7.50

How to Cite

Kobler, A.; Brandl, C.; Hahn, H.; Kübel, C. Beilstein J. Nanotechnol. 2016, 7, 572–580. doi:10.3762/bjnano.7.50

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.6 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Hong, Z.; Zhu, Q.; Wan, P.; Zhou, H.; Zhang, Y.; Wang, J. Shear-induced directional grain growth in Ag nanocrystalline films under nanoindentation. Materials Characterization 2023, 203, 113073. doi:10.1016/j.matchar.2023.113073
  • Bikmukhametov, I.; Gupta, A.; Koenig, T. R.; Tucker, G. J.; Thompson, G. B. Consequences of solute partitioning on hardness in stabilized nanocrystalline alloys. Materials Science and Engineering: A 2023, 875, 145113. doi:10.1016/j.msea.2023.145113
  • Ma, X.; Gwalani, B.; Tao, J.; Efe, M.; Olszta, M.; Song, M.; Yadav, S.; Yu, A.; Nizolek, T. J.; Carpenter, J. S.; Zhou, B.; Devaraj, A.; Mathaudhu, S.; Rohatgi, A. Shear strain gradient in Cu/Nb nanolaminates: Strain accommodation and chemical mixing. Acta Materialia 2022, 234, 117986. doi:10.1016/j.actamat.2022.117986
  • Yang, Q.; Yang, B.; Chu, Z.; Xue, C.; Li, Y.; Tuo, L.; Gao, H. Effect of deformation conditions on compression phase transformation of AZ31. Nanotechnology Reviews 2022, 11, 2547–2564. doi:10.1515/ntrev-2022-0151
  • Bikmukhametov, I.; Koenig, T.; Tucker, G. J.; Thompson, G. B. A rapid preparation method for in situ nanomechanical TEM tensile specimens. Journal of Materials Research 2021, 36, 2315–2324. doi:10.1557/s43578-021-00167-9
  • Kashiwar, A.; Hahn, H.; Kübel, C. In Situ TEM Observation of Cooperative Grain Rotations and the Bauschinger Effect in Nanocrystalline Palladium. Nanomaterials (Basel, Switzerland) 2021, 11, 432. doi:10.3390/nano11020432
  • Ma, X.; Gwalani, B.; Tao, J.; Efe, M.; Olszta, M.; Song, M.; Yadav, S.; Yu, A.; Nizolek, T. J.; Carpenter, J. S.; Zhou, B.; Devaraj, A.; Mathaudhu, S.; Rohatgi, A. Shear Strain Gradient in Cu/Nb Nanolaminates: Strain Accommodation and Chemical Mixing. SSRN Electronic Journal 2021. doi:10.2139/ssrn.3986886
  • Cavaliere, P. Crack Initiation and Growth in Metal Alloys and Composites. Fatigue and Fracture of Nanostructured Materials; Springer International Publishing, 2020; pp 105–154. doi:10.1007/978-3-030-58088-9_3
  • Gorji, S.; Kashiwar, A.; Mantha, L. S.; Kruk, R.; Witte, R.; Marek, P.; Hahn, H.; Kübel, C.; Scherer, T. Nanowire facilitated transfer of sensitive TEM samples in a FIB. Ultramicroscopy 2020, 219, 113075. doi:10.1016/j.ultramic.2020.113075
  • Rida, A.; Micoulaut, M.; Rouhaud, E.; Makke, A. Understanding the strain rate sensitivity of nanocrystalline copper using molecular dynamics simulations. Computational Materials Science 2020, 172, 109294. doi:10.1016/j.commatsci.2019.109294
  • Chrominski, W.; Lewandowska, M. The importance of microstructural heterogeneities in the work hardening of ultrafine-grained aluminum, studied by in-situ TEM straining and mechanical tests. Materials Science and Engineering: A 2019, 764, 138200. doi:10.1016/j.msea.2019.138200
  • Eggeman, A. S. Scanning transmission electron diffraction methods. Acta crystallographica Section B, Structural science, crystal engineering and materials 2019, 75, 475–484. doi:10.1107/s2052520619006723
  • Brandl, C. Molecular Dynamics Simulations of Nanopolycrystals. Handbook of Mechanics of Materials; Springer Singapore, 2019; pp 301–330. doi:10.1007/978-981-10-6884-3_12
  • Parajuli, P.; Mendoza-Cruz, R.; Santiago, U.; Ponce, A.; Yacaman, M. J. The Evolution of Growth, Crystal Orientation, and Grain Boundaries Disorientation Distribution in Gold Thin Films. Crystal Research and Technology 2018, 53, 1800038. doi:10.1002/crat.201800038
  • Chrominski, W.; Lewandowska, M. Mechanisms of plastic deformation in ultrafine-grained aluminium – In-situ and ex-post studies. Materials Science and Engineering: A 2018, 715, 320–331. doi:10.1016/j.msea.2017.12.083
  • Dupraz, M.; Sun, Z.; Brandl, C.; Van Swygenhoven, H. Dislocation interactions at reduced strain rates in atomistic simulations of nanocrystalline Al. Acta Materialia 2018, 144, 68–79. doi:10.1016/j.actamat.2017.10.043
  • Brandl, C. Molecular Dynamics Simulations of Nanopolycrystals. Handbook of Mechanics of Materials; Springer Singapore, 2018; pp 1–30. doi:10.1007/978-981-10-6855-3_12-1
  • Rottmann, P. F.; Hemker, K. J. Experimental quantification of mechanically induced boundary migration in nanocrystalline copper films. Acta Materialia 2017, 140, 46–55. doi:10.1016/j.actamat.2017.08.022
  • Kübel, C.; Kobler, A.; Kashiwar, A.; Hahn, H. Imaging the Structural Evolution in Nanocrystalline Metals during Mechanical Deformation. Microscopy and Microanalysis 2017, 23, 748–749. doi:10.1017/s1431927617004408
  • Gruber, W.; Baehtz, C.; Geue, T.; Stahn, J.; Schmidt, H. Isothermal differential dilatometry based on X-ray analysis applied to stress relaxation in thin ion-beam-sputtered Pt films. Journal of Materials Science 2016, 52, 1647–1660. doi:10.1007/s10853-016-0458-7
Other Beilstein-Institut Open Science Activities