Cite the Following Article
The integration of graphene into microelectronic devices
Guenther Ruhl, Sebastian Wittmann, Matthias Koenig and Daniel Neumaier
Beilstein J. Nanotechnol. 2017, 8, 1056–1064.
https://doi.org/10.3762/bjnano.8.107
How to Cite
Ruhl, G.; Wittmann, S.; Koenig, M.; Neumaier, D. Beilstein J. Nanotechnol. 2017, 8, 1056–1064. doi:10.3762/bjnano.8.107
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 212.2 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Jia, B.; Gao, J.; Zhao, J.; Liang, J.; Zhang, X.; Xiao, W.; Guan, X.; Lu, P. Atomic structures and electronic properties of different contact surfaces for C x F y -SiO2 triboelectric nanogenerator based on first-principles investigations. RSC advances 2025, 15, 1618–1624. doi:10.1039/d4ra08732a
- Roshchupkin, D.; Kononenko, O.; Matveev, V.; Pundikov, K.; Emelin, E. Application of Graphene in Acoustoelectronics. Nanomaterials (Basel, Switzerland) 2024, 14, 1720. doi:10.3390/nano14211720
- Роговина, С. З.; Кузнецова, О. П.; Гасымов, М. М.; Ломакин, С. М.; Шевченко, В. Г.; Берлин, А. А. Композиции полилактида с углеродными нанонаполнителями: получение, структура, свойства. Vysokomolekulârnye soedineniâ. Seriâ B, Himiâ polimerov 2024, 66, 140–155. doi:10.31857/s2308113924020057
- Politano, G. G. Optical Properties of Graphene Nanoplatelets on Amorphous Germanium Substrates. Molecules (Basel, Switzerland) 2024, 29, 4089. doi:10.3390/molecules29174089
- Rogovina, S. Z.; Kuznetsova, O. P.; Gasymov, M. M.; Lomakin, S. M.; Shevchenko, V. G.; Berlin, A. A. Composites of Polylactide with Carbon Nanofillers: Synthesis, Structure, Properties. Polymer Science, Series C 2024, 66, 68–80. doi:10.1134/s1811238224600095
- Escobar Veras, S.; Espada, E.; Collazo, S.; Grau, M.; Katiyar, R.; Makarov, V. I.; Weiner, B. R.; Morell, G. Hydrogenated graphene systems: A novel growth and hydrogenation process. Carbon Trends 2024, 15, 100360. doi:10.1016/j.cartre.2024.100360
- Giannazzo, F.; Panasci, S. E.; Schilirò, E.; Koos, A.; Pécz, B. Integration of graphene and MoS2 on silicon carbide: Materials science challenges and novel devices. Materials Science in Semiconductor Processing 2024, 174, 108220. doi:10.1016/j.mssp.2024.108220
- Ignacio, N. D.; Fatheema, J.; Jeon, Y.; Akinwande, D. Air‐Stable Atomically Encapsulated Crystalline‐Crystalline Phase Transitions in In2Se3. Advanced Electronic Materials 2023, 10. doi:10.1002/aelm.202300457
- Feria, D.; Lopes, A.; Purificaçao, D. D.; Pereyra, I.; Carreño, M. Laser-induced graphene in flexible PI/PDMS polymer aiming application in pressure sensors. In 2023 37th Symposium on Microelectronics Technology and Devices (SBMicro), IEEE, 2023; pp 1–4. doi:10.1109/sbmicro60499.2023.10302489
- Bracamonte, A. G. Insights Focused on Hybrid Graphene Modifications within the Nanoscale for Opto-Electronics Perspectives. Recent Progress in Materials 2023, 5, 1–21. doi:10.21926/rpm.2303030
- La Via, F.; Alquier, D.; Giannazzo, F.; Kimoto, T.; Neudeck, P.; Ou, H.; Roncaglia, A.; Saddow, S. E.; Tudisco, S. Emerging SiC Applications beyond Power Electronic Devices. Micromachines 2023, 14, 1200. doi:10.3390/mi14061200
- Wittmann, S.; Pindl, S.; Sawallich, S.; Nagel, M.; Michalski, A.; Pandey, H.; Esteki, A.; Kataria, S.; Lemme, M. C. Assessment of Wafer‐Level Transfer Techniques of Graphene with Respect to Semiconductor Industry Requirements. Advanced Materials Technologies 2023, 8. doi:10.1002/admt.202201587
- Escobar Veras, S. A.; Espada, E.; Collazo-Hernandez, S.; Grau-Rodriguez, M.; Katiyar, R.; Makarov, V.; Weiner, B.; Morell, G. Highly Ferromagnetic Defective Graphene: A Single-Step Growth and Hydrogenation Process. Elsevier BV 2023. doi:10.2139/ssrn.4534437
- Ramos-Soriano, J.; Ghirardello, M.; Galan, M. C. Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes. Chemical Society reviews 2022, 51, 9960–9985. doi:10.1039/d2cs00741j
- J, F. D.; Pinto, A. L. M.; Bertotti, M.; Carreno, M.; Pereyra, I. Electrochemical electrodes based on Laser Induced Graphene on PECVD a-SiC:H and Polyimide. In 2022 36th Symposium on Microelectronics Technology (SBMICRO), IEEE, 2022; pp 1–4. doi:10.1109/sbmicro55822.2022.9881043
- Torrisi, L.; Cutroneo, M.; Manno, D.; Serra, A.; Torrisi, A.; Silipigni, L. Proton beam dosimetry based on the graphene oxide reduction and Raman spectroscopy. Vacuum 2022, 201, 111113. doi:10.1016/j.vacuum.2022.111113
- Filnov, S. O.; Rybkina, A. A.; Tarasov, A. V.; Eryzhenkov, A. V.; Eliseev, I. A.; Davydov, V. Y.; Shikin, A. M.; Rybkin, A. G. Analysis of Cobalt Intercalation under the Buffer Carbon Layer on a SiC(0001) Single Crystal. Journal of Experimental and Theoretical Physics 2022, 134, 188–196. doi:10.1134/s1063776122020121
- Saeed, M.; Palacios, P.; Wei, M.-D.; Baskent, E.; Fan, C.-Y.; Uzlu, B.; Wang, K.-T.; Hemmetter, A.; Wang, Z.; Neumaier, D.; Lemme, M. C.; Negra, R. Graphene-Based Microwave Circuits: A Review. Advanced materials (Deerfield Beach, Fla.) 2022, 34, e2108473. doi:10.1002/adma.202108473
- Esmeryan, K. D.; Vargas, S.; Gyoshev, S. D.; Castano, C. E. Water droplet bouncing on pre-frosted superhydrophobic carbon soot — A step forward in designing passive icephobic surfaces. Diamond and Related Materials 2022, 123, 108850. doi:10.1016/j.diamond.2022.108850
- Torrisi, L.; Salvato, G.; Cutroneo, M.; Librizzi, F.; Torrisi, A.; Silipigni, L. Source-drain electrical conduction and radiation detection in graphene-based field effect transistor (GFET). Journal of Instrumentation 2022, 17, P02008. doi:10.1088/1748-0221/17/02/p02008