A review of demodulation techniques for amplitude-modulation atomic force microscopy

Michael G. Ruppert, David M. Harcombe, Michael R. P. Ragazzon, S. O. Reza Moheimani and Andrew J. Fleming
Beilstein J. Nanotechnol. 2017, 8, 1407–1426. https://doi.org/10.3762/bjnano.8.142

Cite the Following Article

A review of demodulation techniques for amplitude-modulation atomic force microscopy
Michael G. Ruppert, David M. Harcombe, Michael R. P. Ragazzon, S. O. Reza Moheimani and Andrew J. Fleming
Beilstein J. Nanotechnol. 2017, 8, 1407–1426. https://doi.org/10.3762/bjnano.8.142

How to Cite

Ruppert, M. G.; Harcombe, D. M.; Ragazzon, M. R. P.; Moheimani, S. O. R.; Fleming, A. J. Beilstein J. Nanotechnol. 2017, 8, 1407–1426. doi:10.3762/bjnano.8.142

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 468.5 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Xia, F.; Rangelow, I. W.; Youcef-Toumi, K. AFM Electronics and Signal Processing. Active Probe Atomic Force Microscopy; Springer International Publishing, 2024; pp 227–248. doi:10.1007/978-3-031-44233-9_8
  • Alemansour, H.; Reza Moheimani, S. O. Model-Based Control of the Scanning Tunneling Microscope: Enabling New Modes of Imaging, Spectroscopy, and Lithography. IEEE Control Systems 2024, 44, 46–66. doi:10.1109/mcs.2023.3329923
  • Biglarbeigi, P.; Morelli, A.; Pauly, S.; Yu, Z.; Jiang, W.; Sharma, S.; Finlay, D.; Kumar, A.; Soin, N.; Payam, A. F. Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy. ACS nano 2023, 17, 21506–21517. doi:10.1021/acsnano.3c06488
  • Gisbert, V. G.; Garcia, R. Insights and guidelines to interpret forces and deformations at the nanoscale by using a tapping mode AFM simulator: dForce 2.0. Soft matter 2023, 19, 5857–5868. doi:10.1039/d3sm00334e
  • Gorugantu, R. S.; Salapaka, S. M. A novel control design for high-speed Atomic Force Microscopy<sup>*</sup>. In 2023 American Control Conference (ACC), IEEE, 2023. doi:10.23919/acc55779.2023.10156581
  • Ferri, G.; Barile, G.; Leoni, A. Editorial for the Special Issue on Electronics for Sensors II. Sensors (Basel, Switzerland) 2023, 23, 1640. doi:10.3390/s23031640
  • Lee, M.; Rhee, D.; Kim, J.; Park, C. Y.; Kim, M.-g.; Kang, J.; Lee, Y. T. Solution-Processed MoS2-Based Back-to-Back Diodes Circuit Applications for Signal Demodulators and Envelope Detectors. ACS Materials Letters 2022, 4, 1556–1564. doi:10.1021/acsmaterialslett.2c00515
  • Pettinato, S.; Girolami, M.; Rossi, M. C.; Salvatori, S. Accurate Signal Conditioning for Pulsed-Current Synchronous Measurements. Sensors (Basel, Switzerland) 2022, 22, 5360. doi:10.3390/s22145360
  • Poik, M.; Mayr, M.; Hackl, T.; Schitter, G. Mechatronic Demodulation for Dynamic Atomic Force Microscopy Measurement Modes. In 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), IEEE, 2022. doi:10.1109/i2mtc48687.2022.9806639
  • Kaci, A.; Giraud-Audine, C.; Giraud, F.; Amberg, M.; Lemaire-Semail, B. Closed loop control of vibration field transient: Application to wave focusing. Mechanical Systems and Signal Processing 2022, 167, 108285. doi:10.1016/j.ymssp.2021.108285
  • Zan, W.; Wang, Y.; Liu, X.; Wang, P.; Jin, B. Envelope Extraction for Vibration Locating in Coherent Φ-OTDR. Sensors (Basel, Switzerland) 2022, 22, 1197. doi:10.3390/s22031197
  • Ragazzon, M. R. P.; Messineo, S.; Gravdahl, J. T.; Harcombe, D. M.; Ruppert, M. G. The Generalized Lyapunov Demodulator: High-Bandwidth, Low-Noise Amplitude and Phase Estimation. IEEE Open Journal of Control Systems 2022, 1, 69–84. doi:10.1109/ojcsys.2022.3181111
  • Wu, L.; Zhao, G.; Feng, Z. A High Resolution Synchronous Demodulation Method Based on Gated Integrator for Precision Sensors. IEEE Transactions on Instrumentation and Measurement 2022, 71, 1–9. doi:10.1109/tim.2022.3156975
  • Amoros, S.; Gálvez-Montón, C.; Rodríguez-Leor, O.; O'Callaghan, J. M. A Simple Low-Cost Electrocardiogram Synchronizer. Sensors (Basel, Switzerland) 2021, 21, 5885. doi:10.3390/s21175885
  • Lagrange, D.; Mauran, N.; Schwab, L.; Legrand, B. Low Latency Demodulation for High-Frequency Atomic Force Microscopy Probes. IEEE Transactions on Control Systems Technology 2021, 29, 2264–2270. doi:10.1109/tcst.2020.3028737
  • Xia, F.; Quigley, J.; Zhang, X.; Yang, C.; Wang, Y.; Youcef-Toumi, K. A modular low-cost atomic force microscope for precision mechatronics education. Mechatronics 2021, 76, 102550. doi:10.1016/j.mechatronics.2021.102550
  • Payam, A. F.; Biglarbeigi, P.; Morelli, A.; Lemoine, P.; McLaughlin, J.; Finlay, D. Data acquisition and imaging using wavelet transform: a new path for high speed transient force microscopy. Nanoscale advances 2021, 3, 383–398. doi:10.1039/d0na00531b
  • Gabrielaitis, M. Fast and Accurate Amplitude Demodulation of Wideband Signals. IEEE Transactions on Signal Processing 2021, 69, 4039–4054. doi:10.1109/tsp.2021.3087899
  • Poik, M.; Kohl, D.; Mayr, M.; Kerschner, C.; Schitter, G. A Mechatronic Lock-In Amplifier: Integrating Demodulation in Sensor Electronics for Measuring Mechanical Oscillations. IEEE Transactions on Instrumentation and Measurement 2021, 70, 1–8. doi:10.1109/tim.2020.3047208
  • Sherkat, H.; Pinto-Orellana, M. A.; Mirtaheri, P. SHADE: Absorption spectroscopy enhancement with ambient light estimation and narrow-band detection. Optik 2020, 220, 165116. doi:10.1016/j.ijleo.2020.165116


  • KOHL DOMINIK; POIK MATHIAS; SCHITTER GEORG. Method and control unit for demodulation. US 11946949 B2, April 2, 2024.
Other Beilstein-Institut Open Science Activities