Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

Xiaoli Sun and Zhiguo Wang
Beilstein J. Nanotechnol. 2017, 8, 2711–2718. https://doi.org/10.3762/bjnano.8.270

Cite the Following Article

Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers
Xiaoli Sun and Zhiguo Wang
Beilstein J. Nanotechnol. 2017, 8, 2711–2718. https://doi.org/10.3762/bjnano.8.270

How to Cite

Sun, X.; Wang, Z. Beilstein J. Nanotechnol. 2017, 8, 2711–2718. doi:10.3762/bjnano.8.270

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 596.8 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Sahoo, S.; Kumari, P.; Gupta, N.; Som, N. N.; Ray, S. J. Electronic Properties of Twisted hBN/NbSe2 Hetero-structure and Its Application as an Electrode in Lithium-Ion Battery: First-Principle Study. The Journal of Physical Chemistry C 2024, 128, 1877–1885. doi:10.1021/acs.jpcc.3c05943
  • Kim, J. H.; Sung, H.; Lee, G.-H. Phase Engineering of Two‐Dimensional Transition Metal Dichalcogenides. Small Science 2023, 4. doi:10.1002/smsc.202300093
  • Koley, S. Intercalation in 2H-TaSe2 for modulation of electronic properties and electrochemical energy storage. Physica B: Condensed Matter 2023, 669, 415312. doi:10.1016/j.physb.2023.415312
  • Yang, S.; Zhang, D.; Lei, G.; Wang, Z.; Lan, Z.; Xu, H.; Gu, H. Hydrogen adsorption on TaSe2 monolayer doped with light metals: A DFT study. Vacuum 2022, 196, 110775. doi:10.1016/j.vacuum.2021.110775
  • Elomrani, A.; Lamhani, M.; Oukahou, S.; Sbiaai, K.; Lebègue, S.; Hasnaoui, A. Two dimensional h-BSb mono-layer as a promising anode material for lithium-ion batteries studied from ab initio simulations. Materials Chemistry and Physics 2022, 275, 125191. doi:10.1016/j.matchemphys.2021.125191
  • Huang, K.; Du, J.; Hu, J.; Tao, H.; Yang, J.; Su, H.; Lian, C.; Shang, Y.; Liu, H. Suppressing lithium dendrites by coating MoS2 with different layer spacings: A multiscale simulation study. Chemical Engineering Science 2021, 244, 116795. doi:10.1016/j.ces.2021.116795
  • Celaya, C. A.; Boujnah, M.; Reina, M.; Muñiz, J.; Sansores, L. E. Theoretical study of Au20/WS2 composite material as a potential candidate for the capture of XO (X=C, N, S) gases. Computational Condensed Matter 2021, 28, e00580. doi:10.1016/j.cocom.2021.e00580
  • Wang, M.; Xu, S.; J., J. Revisiting Intercalation-Induced Phase Transitions in 2D Group VI Transition Metal Dichalcogenides. Advanced Energy and Sustainability Research 2021, 2, 2100027. doi:10.1002/aesr.202100027
  • Cha, E.; Kim, K.; Choi, W. Advances of 2D MoS2 for High-Energy Lithium Metal Batteries. Frontiers in Energy Research 2021, 9. doi:10.3389/fenrg.2021.645403
  • Huynh, T. M. D.; Nguyen, D. K.; Nguyen, T. D. H.; Dien, V. K.; Pham, H. D.; Lin, M.-F. Geometric and electronic properties of monolayer HfX2 (X= S, Se, or Te): A first-principles calculation. Frontiers in Materials 2021, 7, 569756. doi:10.3389/fmats.2020.569756
  • Zhao, C.; Wang, D.; Lian, R.; Kan, D.; Dou, Y.; Wang, C.; Chen, G.; Wei, Y. Revealing the distinct electrochemical properties of TiSe2 monolayer and bulk counterpart in Li-ion batteries by first-principles calculations. Applied Surface Science 2021, 540, 148314. doi:10.1016/j.apsusc.2020.148314
  • Zhang, M.; Tang, C.; Cheng, W.; Fu, L. The first-principles study on the performance of the graphene/WS2 heterostructure as an anode material of Li-ion battery. Journal of Alloys and Compounds 2021, 855, 157432. doi:10.1016/j.jallcom.2020.157432
  • Lin, L.; Chen, J.; Liu, D.; Li, X.; Wallace, G. G.; Zhang, S. Engineering 2D Materials: A Viable Pathway for Improved Electrochemical Energy Storage. Advanced Energy Materials 2020, 10, 2002621. doi:10.1002/aenm.202002621
  • Kızılaslan, A.; Cetinkaya, T.; Akbulut, H. 2H‐MoS2 as an Artificial Solid Electrolyte Interface in All‐Solid‐State Lithium–Sulfur Batteries. Advanced Materials Interfaces 2020, 7, 2001020. doi:10.1002/admi.202001020
  • Ye, L.; Wang, Z. Elastic softening of group IVA (Si, Ge and Sn) materials by electron and lithium doping. Modern Physics Letters B 2020, 34, 2050140. doi:10.1142/s0217984920501407
  • Samal, R.; Rout, C. S. Recent Developments on Emerging Properties, Growth Approaches, and Advanced Applications of Metallic 2D Layered Vanadium Dichalcogenides. Advanced Materials Interfaces 2020, 7, 1901682. doi:10.1002/admi.201901682
  • Oliveira, R. R.; Tenorio, B. N. C.; Rocha, A. B. Ab initio study of diffusion of hydrogen, silver and lithium in PbS and Ag2S. Computational Materials Science 2019, 166, 75–81. doi:10.1016/j.commatsci.2019.04.046
  • Wang, K.; Wang, H.; Zhang, M.; Liu, Y.; Zhao, W. Electronic and magnetic properties of doped black phosphorene with concentration dependence. Beilstein journal of nanotechnology 2019, 10, 993–1001. doi:10.3762/bjnano.10.100
  • Singh, B.; Gupta, M. K.; Mittal, R.; Chaplot, S. L. Dynamics of Li-ion in V2O5 Layers from First-Principles Calculations. 2019.
  • Dong, S.; Sun, X.; Wang, Z. Trapping polysulfide on two-dimensional molybdenum disulfide for Li-S batteries through phase selection with optimized binding. Beilstein journal of nanotechnology 2019, 10, 774–780. doi:10.3762/bjnano.10.77
Other Beilstein-Institut Open Science Activities