Impact of titanium dioxide nanoparticles on purification and contamination of nematic liquid crystals

Dmitrii Pavlovich Shcherbinin and Elena A. Konshina
Beilstein J. Nanotechnol. 2017, 8, 2766–2770.

Cite the Following Article

Impact of titanium dioxide nanoparticles on purification and contamination of nematic liquid crystals
Dmitrii Pavlovich Shcherbinin and Elena A. Konshina
Beilstein J. Nanotechnol. 2017, 8, 2766–2770.

How to Cite

Shcherbinin, D. P.; Konshina, E. A. Beilstein J. Nanotechnol. 2017, 8, 2766–2770. doi:10.3762/bjnano.8.275

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 488.9 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kovalchuk, O. V.; Kovalchuk, T. M.; Garbovskiy, Y. Eliminating Ambiguities in Electrical Measurements of Advanced Liquid Crystal Materials. Crystals 2023, 13, 1093. doi:10.3390/cryst13071093
  • Malik, P.; Singh, A. K. Metal oxide alumina nanowire-induced polymer-dispersed liquid crystal composites for low power consumption smart windows. Journal of Molecular Liquids 2023, 378, 121573. doi:10.1016/j.molliq.2023.121573
  • Chauhan, G.; Malik, P.; Deep, A. Morphological, dielectric, electro-optic and photoluminescence properties of titanium oxide nanoparticles enriched polymer stabilized cholesteric liquid crystal composites. Journal of Molecular Liquids 2023, 376, 121406. doi:10.1016/j.molliq.2023.121406
  • Garbovskiy, Y. A perspective on the Langmuir adsorption model applied to molecular liquid crystals containing ions and nanoparticles. Frontiers in Soft Matter 2022, 2. doi:10.3389/frsfm.2022.1079063
  • Patranabish, S.; Sinha, A.; Kanakala, M. B.; Yelamaggad, C. V. Nematic twist-bend phase of a bent liquid crystal dimer: field-induced deformations of the helical structure and macroscopic polarization. Journal of physics. Condensed matter : an Institute of Physics journal 2022, 34, 465101. doi:10.1088/1361-648x/ac8fd3
  • Kovalchuk, O. V.; Glushchenko, A.; Garbovskiy, Y. Improving experimental procedures for assessing electrical properties of advanced liquid crystal materials. Liquid Crystals 2022, 50, 140–148. doi:10.1080/02678292.2022.2114027
  • Kaur, G.; Khushboo; Malik, P. Mesomorphic, electro-optic and dielectric behavior of self-assembled nanocomposite materials: Nematic mixture doped with carbon coated cobalt nanoparticles. Journal of Molecular Liquids 2022, 351, 118639. doi:10.1016/j.molliq.2022.118639
  • Kurilov, A. D.; Chausov, D. N.; Osipova, V. V.; Kucherov, R. N.; Belyaev, V. V.; Galyametdinov, Y. G. Highly luminescent nanocomposites of nematic liquid crystal and hybrid quantum dots CdSe/CdS with ZnS shell. Journal of Molecular Liquids 2021, 339, 116747. doi:10.1016/j.molliq.2021.116747
  • Singh, B. P.; Huang, C. Y.; Singh, D. P.; Palani, P.; Duponchel, B.; Sah, M.; Manohar, R.; Pandey, K. The scientific duo of TiO2 nanoparticles and nematic liquid crystal E204: Increased absorbance, photoluminescence quenching and improving response time for electro-optical devices. Journal of Molecular Liquids 2021, 325, 115130. doi:10.1016/j.molliq.2020.115130
  • Garbovskiy, Y. Conventional and unconventional ionic phenomena in tunable soft materials made of liquid crystals and nanoparticles. Nano Express 2021, 2, 012004. doi:10.1088/2632-959x/abe652
  • Ayeb, H.; Missaoui, T.; Mouhli, A.; Jomni, F.; Soltani, T. Dielectric spectroscopy study on the impact of magnetic and nonmagnetic nanoparticles dispersion on ionic behavior in nematic liquid crystal. Phase Transitions 2020, 94, 37–46. doi:10.1080/01411594.2020.1865536
  • Özgan, Ş.; Eskalen, H. Electrical properties of the octyl cyanobiphenyl nematic liquid crystal dispersed with graphene oxide. Journal of Materials Science: Materials in Electronics 2020, 31, 19787–19796. doi:10.1007/s10854-020-04503-3
  • Lalik, S.; Deptuch, A.; B, T. J.-G.; Fryń, P.; Dardas, D.; Stefańczyk, O.; Urbańska, M.; Marzec, M. Modification of AFLC Physical Properties by Doping with BaTiO3 Particles. The journal of physical chemistry. B 2020, 124, 6055–6073. doi:10.1021/acs.jpcb.0c02401
  • Garbovskiy, Y. On the Analogy between Electrolytes and Ion-Generating Nanomaterials in Liquid Crystals. Nanomaterials (Basel, Switzerland) 2020, 10, 403. doi:10.3390/nano10030403
  • Prakash, J.; Khan, S.; Chauhan, S.; Biradar, A. M. Metal oxide-nanoparticles and liquid crystal composites: A review of recent progress. Journal of Molecular Liquids 2020, 297, 112052. doi:10.1016/j.molliq.2019.112052
  • Dalir, N.; Javadian, S.; Kakemam, J.; Sadrpoor, S. M. Enhance the electrical conductivity and charge storage of nematic phase by doping 0D photoluminescent graphene was prepared with small organic molecule as a new array quantum dot liquid crystal displays. Journal of Molecular Liquids 2019, 276, 290–295. doi:10.1016/j.molliq.2018.11.160
  • Gao, L.; Dai, Y.; Li, T.; Tang, Z.; Zhao, X.; Li, Z.; Meng, X.; He, Z.; Li, J.; Cai, M.; Wang, X.; Zhu, J.; Hongyu, X.; Wenjiang, Y. Enhancement of Image Quality in LCD by Doping γ-Fe₂O₃ Nanoparticles and Reducing Friction Torque Difference. Nanomaterials (Basel, Switzerland) 2018, 8, 911. doi:10.3390/nano8110911
  • Yadav, G.; Katiyar, R.; Pathak, G.; Manohar, R. Effect of ion trapping behavior of TiO 2 nanoparticles on different parameters of weakly polar nematic liquid crystal. Journal of Theoretical and Applied Physics 2018, 12, 191–198. doi:10.1007/s40094-018-0296-x
  • Agrahari, K.; Pathak, G.; Vimal, T.; Kurp, K.; Srivastava, A.; Manohar, R. Dielectric and spectroscopic study of nano-sized diamond dispersed ferroelectric liquid crystal. Journal of Molecular Liquids 2018, 264, 510–514. doi:10.1016/j.molliq.2018.05.097
  • Garbovskiy, Y. Nanoparticle-Enabled Ion Trapping and Ion Generation in Liquid Crystals. Advances in Condensed Matter Physics 2018, 2018, 1–8. doi:10.1155/2018/8914891
Other Beilstein-Institut Open Science Activities