3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

Brett B. Lewis, Robert Winkler, Xiahan Sang, Pushpa R. Pudasaini, Michael G. Stanford, Harald Plank, Raymond R. Unocic, Jason D. Fowlkes and Philip D. Rack
Beilstein J. Nanotechnol. 2017, 8, 801–812. https://doi.org/10.3762/bjnano.8.83

Supporting Information

Supporting Information File 1: 3D Nanoprinting via LAEBID supplement.
This supplement describes the details of the shape fidelity of the in situ anneal, the bridge patterning strategy, the thermal simulation methods and variable, the STEM images of as-deposited wires, and the elemental mapping of the nanowires.
Format: PDF Size: 890.6 KB Download

Cite the Following Article

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity
Brett B. Lewis, Robert Winkler, Xiahan Sang, Pushpa R. Pudasaini, Michael G. Stanford, Harald Plank, Raymond R. Unocic, Jason D. Fowlkes and Philip D. Rack
Beilstein J. Nanotechnol. 2017, 8, 801–812. https://doi.org/10.3762/bjnano.8.83

How to Cite

Lewis, B. B.; Winkler, R.; Sang, X.; Pudasaini, P. R.; Stanford, M. G.; Plank, H.; Unocic, R. R.; Fowlkes, J. D.; Rack, P. D. Beilstein J. Nanotechnol. 2017, 8, 801–812. doi:10.3762/bjnano.8.83

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.1 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Yoshimoto, Y.; Nakazawa, K.; Ishikawa, M.; Ono, A.; Iwata, F. In-process sintering of Au nanoparticles deposited in laser-assisted electrophoretic deposition. Optics express 2023, 31, 41726. doi:10.1364/oe.501590
  • Park, H.; Park, J. J.; Bui, P.-D.; Yoon, H.; Grigoropoulos, C. P.; Lee, D.; Ko, S. H. Laser-Based Selective Material Processing for Next-Generation Additive Manufacturing. Advanced materials (Deerfield Beach, Fla.) 2023, e2307586. doi:10.1002/adma.202307586
  • Lasseter, J.; Rack, P. D.; Randolph, S. J. Selected Area Deposition of PtCx Nanostructures: Implications for Functional Coatings of 3D Nanoarchitectures. ACS Applied Nano Materials 2022, 5, 10890–10899. doi:10.1021/acsanm.2c02182
  • Salvador-Porroche, A.; Herrer, L.; Sangiao, S.; de Teresa, J. M.; Cea, P. Low-resistivity Pd nanopatterns created by a direct electron beam irradiation process free of post-treatment steps. Nanotechnology 2022, 33, 405302. doi:10.1088/1361-6528/ac47cf
  • Utke, I.; Swiderek, P.; Höflich, K.; Madajska, K.; Jurczyk, J.; Martinović, P.; Szymańska, I. Coordination and organometallic precursors of group 10 and 11: Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coordination Chemistry Reviews 2022, 458, 213851. doi:10.1016/j.ccr.2021.213851
  • Winkler, R.; Fowlkes, J. D.; Rack, P. D.; Kothleitner, G.; Plank, H. Shape evolution and growth mechanisms of 3D-printed nanowires. Additive Manufacturing 2021, 46, 102076. doi:10.1016/j.addma.2021.102076
  • Hinum-Wagner, J. W.; Kuhness, D.; Kothleitner, G.; Winkler, R.; Plank, H. FEBID 3D-Nanoprinting at Low Substrate Temperatures: Pushing the Speed While Keeping the Quality. Nanomaterials (Basel, Switzerland) 2021, 11, 1527. doi:10.3390/nano11061527
  • Belianinov, A.; Burch, M. J.; Ievlev, A. V.; Kim, S.; Stanford, M. G.; Mahady, K.; Lewis, B. B.; Fowlkes, J. D.; Rack, P. D.; Ovchinnikova, O. S. Direct Write of 3D Nanoscale Mesh Objects with Platinum Precursor via Focused Helium Ion Beam Induced Deposition. Micromachines 2020, 11, 527. doi:10.3390/mi11050527
  • Plank, H.; Winkler, R.; Schwalb, C. H.; Hütner, J.; Fowlkes, J. D.; Rack, P. D.; Utke, I.; Huth, M. Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review. Micromachines 2019, 11, 48. doi:10.3390/mi11010048
  • Skoric, L.; Sanz-Hernández, D.; Meng, F.; Donnelly, C.; Merino-Aceituno, S.; Fernández-Pacheco, A. Layer-by-layer growth of complex-shaped three-dimensional nanostructures with focused electron beams. Nano letters 2019, 20, 184–191. doi:10.1021/acs.nanolett.9b03565
  • Pakeltis, G.; Hu, Z.; Nixon, A. G.; Mutunga, E.; Anyanwu, C. P.; West, C. A.; Idrobo, J. C.; Plank, H.; Masiello, D. J.; Fowlkes, J. D.; Rack, P. D. Focused Electron Beam Induced Deposition Synthesis of 3D Photonic and Magnetic Nanoresonators. ACS Applied Nano Materials 2019, 2, 8075–8082. doi:10.1021/acsanm.9b02182
  • Zhang, C.; Dyck, O.; Garfinkel, D. A.; Stanford, M. G.; Belianinov, A.; Fowlkes, J. D.; Jesse, S.; Rack, P. D. Pulsed Laser-Assisted Helium Ion Nanomachining of Monolayer Graphene—Direct-Write Kirigami Patterns. Nanomaterials (Basel, Switzerland) 2019, 9, 1394. doi:10.3390/nano9101394
  • Rohdenburg, M.; Martinović, P.; Ahlenhoff, K.; Koch, S.; Emmrich, D.; Gölzhäuser, A.; Swiderek, P. Cisplatin as a Potential Platinum Focused Electron Beam Induced Deposition Precursor: NH3 Ligands Enhance the Electron-Induced Removal of Chlorine. The Journal of Physical Chemistry C 2019, 123, 21774–21787. doi:10.1021/acs.jpcc.9b05756
  • Winkler, R.; Fowlkes, J. D.; Rack, P. D.; Plank, H. 3D nanoprinting via focused electron beams. Journal of Applied Physics 2019, 125, 210901. doi:10.1063/1.5092372
  • Wu, Y.; Liu, C.; Moore, T. M.; Magel, G. A.; Garfinkel, D. A.; Camden, J. P.; Stanford, M. G.; Duscher, G.; Rack, P. D. Exploring Photothermal Pathways via in Situ Laser Heating in the Transmission Electron Microscope: Recrystallization, Grain Growth, Phase Separation, and Dewetting in Ag0.5Ni0.5 Thin Films. Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada 2018, 24, 647–656. doi:10.1017/s1431927618015465
  • Swiderek, P.; Marbach, H.; Hagen, C. W. Chemistry for electron-induced nanofabrication. Beilstein journal of nanotechnology 2018, 9, 1317–1320. doi:10.3762/bjnano.9.124
  • Fowlkes, J. D.; Winkler, R.; Lewis, B. B.; Fernández-Pacheco, A.; Skoric, L.; Sanz-Hernández, D.; Stanford, M. G.; Mutunga, E.; Rack, P. D.; Plank, H. High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID). ACS Applied Nano Materials 2018, 1, 1028–1041. doi:10.1021/acsanm.7b00342
  • Winkler, R.; Lewis, B. B.; Fowlkes, J. D.; Rack, P. D.; Plank, H. High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Growth Fundamentals. ACS Applied Nano Materials 2018, 1, 1014–1027. doi:10.1021/acsanm.8b00158
  • Stano, M.; Fruchart, O. Magnetic Nanowires and Nanotubes. Handbook of Magnetic Materials 2018, 27, 155–267. doi:10.1016/bs.hmm.2018.08.002
  • Huth, M.; Porrati, F.; Dobrovolskiy, O. V. Focused electron beam induced deposition meets materials science. Microelectronic Engineering 2018, 185-186, 9–28. doi:10.1016/j.mee.2017.10.012
Other Beilstein-Institut Open Science Activities