Co-reductive fabrication of carbon nanodots with high quantum yield for bioimaging of bacteria

Jiajun Wang, Xia Liu, Gesmi Milcovich, Tzu-Yu Chen, Edel Durack, Sarah Mallen, Yongming Ruan, Xuexiang Weng and Sarah P. Hudson
Beilstein J. Nanotechnol. 2018, 9, 137–145.

Supporting Information

Supporting Information File 1: Additional experimental data.
The general co-reduction method with urea and thiourea to obtain C-dots, the scale-up synthesis of C-dots, TEM and size distribution of Sb50, XRD patterns of Sa, Sb and Se, Raman spectra of Sa, Sb and Se, deconvoluted C 1s XPS spectra of different C-dots with peak area (A) ratios of the sp3 C or oxidized C to the sp2 C and deconvoluted N 1s XPS spectra of different C-dots with A ratios of the pyrrolic N to pyridinic N.
Format: PDF Size: 206.8 KB Download

Cite the Following Article

Co-reductive fabrication of carbon nanodots with high quantum yield for bioimaging of bacteria
Jiajun Wang, Xia Liu, Gesmi Milcovich, Tzu-Yu Chen, Edel Durack, Sarah Mallen, Yongming Ruan, Xuexiang Weng and Sarah P. Hudson
Beilstein J. Nanotechnol. 2018, 9, 137–145.

How to Cite

Wang, J.; Liu, X.; Milcovich, G.; Chen, T.-Y.; Durack, E.; Mallen, S.; Ruan, Y.; Weng, X.; Hudson, S. P. Beilstein J. Nanotechnol. 2018, 9, 137–145. doi:10.3762/bjnano.9.16

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 975.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Busayaporn, W.; Songsrirote, K.; Phlialamkheak, T.; Chumram, J.; Praingam, N.; Prayongpan, P. Synthesis and application of fluorescent N-doped carbon dots/hydrogel composite for Cr(VI) adsorption: Uncovering the ion species transformation and fluorescent quenching mechanism. Environmental geochemistry and health 2023. doi:10.1007/s10653-023-01576-x
  • Gao, H.; Huang, Q.; Li, Q.; Wu, L.; Liao, H.; Hasan, M.; Gong, S.; Zhou, X. An efficient designing of nitrogen decorated carbon quantum dots as Fe fluorescent probe: On account of binary carbon source system. Materials Today Communications 2023, 35, 105707. doi:10.1016/j.mtcomm.2023.105707
  • Minutolo, P.; De Falco, G.; Commodo, M.; Aloisio, A.; D'Anna, A. Temperature Sensing with Thin Films of Flame-Formed Carbon Nanoparticles. Applied Sciences 2022, 12, 7714. doi:10.3390/app12157714
  • Panariello, L.; Coltelli, M.-B.; Giangrandi, S.; Garrigós, M. C.; Hadrich, A.; Lazzeri, A.; Cinelli, P. Influence of Functional Bio-Based Coatings Including Chitin Nanofibrils or Polyphenols on Mechanical Properties of Paper Tissues. Polymers 2022, 14, 2274. doi:10.3390/polym14112274
  • Li, Q.; Huang, N.; Cui, Y.; Lin, J.; Zhao, C.; Ding, L. Synthesis of porous rod-like In2O3 nanomaterials and its selective detection of NO at room temperature. Journal of Alloys and Compounds 2022, 902, 163632. doi:10.1016/j.jallcom.2022.163632
  • Zaidi, Z.; Maiti, N.; Ali, M. I.; Sharma, G.; Moin, S.; Padhy, H.; Balaji, G. L.; Sundramurthy, V. P. Fabrication, Characteristics, and Therapeutic Applications of Carbon-Based Nanodots. Journal of Nanomaterials 2022, 2022, 1–12. doi:10.1155/2022/8031495
  • Kim, M.; Kim, R. H.; Lee, S. C.; Lee, T. K.; Hayashi, M.; Yu, B.; Jo, D.-W. Evaluation of Tensile Bond Strength between Self-Adhesive Resin Cement and Surface-Pretreated Zirconia. Materials (Basel, Switzerland) 2022, 15, 3089. doi:10.3390/ma15093089
  • Kaminari, A.; Nikoli, E.; Athanasopoulos, A.; Sakellis, E.; Sideratou, Z.; Tsiourvas, D. Engineering Mitochondriotropic Carbon Dots for Targeting Cancer Cells. Pharmaceuticals (Basel, Switzerland) 2021, 14, 932. doi:10.3390/ph14090932
  • Zhu, P.; Li, J.; Gao, L.; Xiong, J.; Tan, K. Strategy to Synthesize Tunable Multiemission Carbon Dots and Their Multicolor Visualization Application. ACS applied materials & interfaces 2021, 13, 33354–33362. doi:10.1021/acsami.1c07260
  • Khan, S.; Dunphy, A.; Anike, M. S.; Belperain, S.; Patel, K.; Chiu, N. H. L.; Jia, Z. Recent Advances in Carbon Nanodots: A Promising Nanomaterial for Biomedical Applications. International journal of molecular sciences 2021, 22, 6786. doi:10.3390/ijms22136786
  • Qin, S.; Yu, X.; Xu, L. Amplified fluorescence detection and adsorption of Au3+ by the fluorescent melamine formaldehyde microspheres incorporated with N and S co-doped carbon dots. Journal of hazardous materials 2020, 405, 123978. doi:10.1016/j.jhazmat.2020.123978
  • Kim, D. H.; Seo, J.; Na, K. pH-Sensitive Carbon Dots for Enhancing Photomediated Antitumor Immunity. Molecular pharmaceutics 2020, 17, 2532–2545. doi:10.1021/acs.molpharmaceut.0c00227
  • Gwebu, S. S.; Maxakato, N. W. The influence of ZrO2 promoter in Pd/fCNDs-ZrO2 catalyst towards alcohol fuel electrooxidation in alkaline media. Materials Research Express 2020, 7, 015607. doi:10.1088/2053-1591/ab640e
  • Ganguly, M.; Ariya, P. A. Ice Nucleation of Model Nanoplastics and Microplastics: A Novel Synthetic Protocol and the Influence of Particle Capping at Diverse Atmospheric Environments. ACS Earth and Space Chemistry 2019, 3, 1729–1739. doi:10.1021/acsearthspacechem.9b00132
  • Kasouni, A.; Chatzimitakos, T.; Stalikas, C. D. Bioimaging Applications of Carbon Nanodots: A Review. 2019, 5, 19. doi:10.3390/c5020019


  • YAN YUJIA; YANG YONGZHONG; REN YINGKUN; QIAN XIAOLEI; HOU BO; HUANG LINGYUN; ZHAO BO. Sulfur-nitrogen co-doped carbon quantum dot fluorescent probe as well as preparation method and application thereof. CN 113278417 A, Aug 20, 2021.
Other Beilstein-Institut Open Science Activities