Cite the Following Article
Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale
Arindam Dasgupta, Mickaël Buret, Nicolas Cazier, Marie-Maxime Mennemanteuil, Reinaldo Chacon, Kamal Hammani, Jean-Claude Weeber, Juan Arocas, Laurent Markey, Gérard Colas des Francs, Alexander Uskov, Igor Smetanin and Alexandre Bouhelier
Beilstein J. Nanotechnol. 2018, 9, 1964–1976.
https://doi.org/10.3762/bjnano.9.187
How to Cite
Dasgupta, A.; Buret, M.; Cazier, N.; Mennemanteuil, M.-M.; Chacon, R.; Hammani, K.; Weeber, J.-C.; Arocas, J.; Markey, L.; des Francs, G. C.; Uskov, A.; Smetanin, I.; Bouhelier, A. Beilstein J. Nanotechnol. 2018, 9, 1964–1976. doi:10.3762/bjnano.9.187
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 970.6 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Borisov, A. G.; Ma, B.; Zapata-Herrera, M.; Babaze, A.; Krüger, M.; Aizpurua, J. Femtosecond Optical-Field-Driven Currents in Few-Nanometer-Size Gaps with Hot Electron Injection into Metallic Leads. ACS Photonics 2025, 12, 2137–2150. doi:10.1021/acsphotonics.4c02612
- Upcraft, D.; Vaz, D.; Youngblood, N.; Oh, S.-H. Efficient TE-polarized mode coupling between a plasmonic tunnel junction and a photonic waveguide. Optics Express 2024, 32, 47574. doi:10.1364/oe.543072
- Deeb, C.; Toudert, J.; Pelouard, J.-L. Electrically driven nanogap antennas and quantum tunneling regime. Nanophotonics (Berlin, Germany) 2023, 12, 3029–3051. doi:10.1515/nanoph-2023-0099
- Mennemanteuil, M. M.; Buret, M.; Colas-des-Francs, G.; Bouhelier, A. Optical rectification and thermal currents in optical tunneling gap antennas. Nanophotonics (Berlin, Germany) 2022, 11, 4197–4208. doi:10.1515/nanoph-2022-0278
- Aşırım, Ö. E. Far-IR to deep-UV adaptive supercontinuum generation using semiconductor nano-antennas via carrier injection rate modulation. Applied Nanoscience 2021, 12, 1–16. doi:10.1007/s13204-021-02147-1
- Lee, J.; Yeo, J.-S. On-Chip Nanoscale Light Source Based on Quantum Tunneling: Enabling Ultrafast Quantum Device and Sensing Applications. Applied Science and Convergence Technology 2021, 30, 6–13. doi:10.5757/asct.2021.30.1.6
- Fleischer, M.; Zhang, D.; Meixner, A. J. Optically and electrically driven nanoantennas. Beilstein journal of nanotechnology 2020, 11, 1542–1545. doi:10.3762/bjnano.11.136
- Huang, B.-H.; Liu, Y.; Chua, S. J.; Liu, Z.-G.; Lu, W.-B.; Guo, Y.-X.; Gao, S.-P. Plasmonic-enhanced light emission from a waveguide-integrated tunnel junction. Journal of the Optical Society of America B 2020, 37, 2171–2178. doi:10.1364/josab.394515
- Zharinov, V. S.; Picot, T.; Scheerder, J. E.; Janssens, E.; Van de Vondel, J. Room temperature single electron transistor based on a size-selected aluminium cluster. Nanoscale 2019, 12, 1164–1170. doi:10.1039/c9nr09467a
- Buret, M.; Smetanin, I. V.; Uskov, A. V.; Francs, G. C. d.; Bouhelier, A. Effect of quantized conductivity on the anomalous photon emission radiated from atomic-size point contacts. Nanophotonics 2019, 9, 413–425. doi:10.1515/nanoph-2019-0325
- Parzefall, M.; Novotny, L. Optical antennas driven by quantum tunneling: a key issues review. Reports on progress in physics. Physical Society (Great Britain) 2019, 82, 112401. doi:10.1088/1361-6633/ab4239