Supporting Information
| Supporting Information File 1: Additional Figures and Tables. | ||
| Format: PDF | Size: 699.1 KB | Download |
Cite the Following Article
Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency
Pascal Kaienburg, Benjamin Klingebiel and Thomas Kirchartz
Beilstein J. Nanotechnol. 2018, 9, 2114–2124.
https://doi.org/10.3762/bjnano.9.200
How to Cite
Kaienburg, P.; Klingebiel, B.; Kirchartz, T. Beilstein J. Nanotechnol. 2018, 9, 2114–2124. doi:10.3762/bjnano.9.200
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 419.6 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Kumar, P.; Khan, M. Q.; Suganthi, S.; Ahmad, K.; Oh, T. H. Progress in Sb2Se3 and Sb2S3‐Based Solar Cells: SCAPS‐1D and Experimental Investigations. ChemistrySelect 2025, 10. doi:10.1002/slct.202404430
- Duan, X.; Amin, A.; Wang, Y.; Yan, F. Grain engineering of solution-processed Sb2S3 thin film by tuning precursor fabrication environments. Results in Surfaces and Interfaces 2024, 16, 100251. doi:10.1016/j.rsurfi.2024.100251
- She, Y.; Zhong, K.; Tu, M.; Xiao, S.; Chen, Z.; An, Y.; Liu, D.; Wu, F. Tunable Near-Infrared Transparent Bands Based on Cascaded Fabry–Perot Cavities Containing Phase Change Materials. Photonics 2024, 11, 497. doi:10.3390/photonics11060497
- Saadat, M. ZnxCd1–xSySe1–y as an effective electron transport layer for improving the efficiency of Sb2S3 and Sb2Se3 thin-film solar cells. The European Physical Journal Plus 2024, 139. doi:10.1140/epjp/s13360-024-05079-1
- Miranda-Gamboa, R. A.; Baron-Jaimes, A.; Millán-Franco, M. A.; Pérez, O.; Rincon, M. E.; Jaramillo-Quintero, O. A. Understanding the effect of TiCl4 treatment at TiO2/Sb2S3 interface on the enhanced performance of Sb2S3 solar cells. Materials Research Express 2024, 11, 25003–025003. doi:10.1088/2053-1591/ad2486
- Dahmardeh, Z.; Saadat, M.; Amiri, O. Enhancing photovoltaic performance of antimony sulfide-selenide tandem solar cells through selenium content variation: Modeling and simulation analysis. Solar Energy 2023, 262, 111788. doi:10.1016/j.solener.2023.06.006
- Dimngaihvungi, E.; Singh, M.; Pani, B.; Singh, A. K. Silver and copper nanowire-based nanocomposite for transparent electrodes: deposition methods and applications in solar cells. Composite Interfaces 2023, 30, 1449–1481. doi:10.1080/09276440.2023.2229586
- Islam, M.; Thakur, A. Effect of design modification on efficiency enhancement in Sb2S3 absorber based solar cell. Current Applied Physics 2023, 49, 25–34. doi:10.1016/j.cap.2023.02.007
- Nadukkandy, A.; Shaji, S.; Avellaneda, D. A.; Aguilar-Martínez, J. A.; Krishnan, B. Cubic structured silver antimony sulfide-selenide solid solution thin films for sustainable photodetection and photovoltaic application. Journal of Alloys and Compounds 2023, 942, 169072. doi:10.1016/j.jallcom.2023.169072
- Farhana, M. A.; Manjceevan, A.; Bandara, J. Recent advances and new research trends in Sb2S3 thin film based solar cells. Journal of Science: Advanced Materials and Devices 2023, 8, 100533. doi:10.1016/j.jsamd.2023.100533
- Islam, M.; Thakur, A. Design simulation analysis for large enhancement in efficiency of sulphur substituted Sb2S3 absorber based solar cell. Optik 2023, 274, 170564. doi:10.1016/j.ijleo.2023.170564
- Büttner, P.; Scheler, F.; Döhler, D.; Barr, M. K.; Bosch, M.; Rey, M.; Yokosawa, T.; Hinz, S.; Maultzsch, J.; Spiecker, E.; Vogel, N.; Mínguez-Bacho, I.; Bachmann, J. Continuous, crystalline Sb2S3 ultrathin light absorber coatings in solar cells based on photonic concentric p-i-n heterojunctions. Nano Energy 2022, 103, 107820. doi:10.1016/j.nanoen.2022.107820
- Zeng, Y.; Wu, J.; Sun, K.; Huang, J.; Li, L.; Sha, C.; Yao, Y.; Lai, Y.; Green, M.; Liu, F.; Hao, X. Low‐Cost Fabrication of Sb2S3 Solar Cells: Direct Evaporation from Raw Stibnite Ore. Solar RRL 2022, 6. doi:10.1002/solr.202100843
- Singh, S.; Singh, A. K.; Kumar, A. Single-source precursors for main group metal sulfides and solar cell applications. Nanomaterials via Single-Source Precursors; Elsevier, 2022; pp 357–387. doi:10.1016/b978-0-12-820340-8.00007-1
- Eensalu, J. S.; Tõnsuaadu, K.; Acik, I. O.; Krunks, M. Sb2S3 thin films by ultrasonic spray pyrolysis of antimony ethyl xanthate. Materials Science in Semiconductor Processing 2022, 137, 106209. doi:10.1016/j.mssp.2021.106209
- Hnainia, N.; Hajlaoui, M. E.; Benchaabane, A.; Gouid, Z.; Sanhoury, M.; Zeinert, A.; Chtourou, R. Study of the effect of capping agent variation on P3HT:CdSe hybrid solar cells. Optik 2021, 248, 168059. doi:10.1016/j.ijleo.2021.168059
- Gnenna, E.; Khemiri, N.; Kong, M.; Alonso, M. I.; Kanzari, M. Effect of vacuum annealing on the properties of one step thermally evaporated Sb2S3 thin films for photovoltaic applications. The European Physical Journal Applied Physics 2021, 96, 20301. doi:10.1051/epjap/2021210101
- Eensalu, J. S.; Tõnsuaadu, K.; Adamson, J.; Acik, I. O.; Krunks, M. Thermal decomposition of tris(O-ethyldithiocarbonato)-antimony(III)—a single-source precursor for antimony sulfide thin films. Journal of Thermal Analysis and Calorimetry 2021, 1–15.
- Eensalu, J. S.; Tõnsuaadu, K.; Adamson, J.; Oja Acik, I.; Krunks, M. Thermal decomposition of tris(O-ethyldithiocarbonato)-antimony(III)—a single-source precursor for antimony sulfide thin films. Journal of Thermal Analysis and Calorimetry 2021, 147, 4899–4913. doi:10.1007/s10973-021-10885-1
- Mkawi, E.; Almalki, R.; Al-Hadeethi, Y. Influence of different concentrations of SbCl3 salt on the properties of Sb2S3 nanobars prepared by the solvothermal method for solar cell application. Optical Materials Express 2021, 11, 2219–2233. doi:10.1364/ome.421147