Interaction-induced zero-energy pinning and quantum dot formation in Majorana nanowires

Samuel D. Escribano, Alfredo Levy Yeyati and Elsa Prada
Beilstein J. Nanotechnol. 2018, 9, 2171–2180. https://doi.org/10.3762/bjnano.9.203

Supporting Information

Supporting Information File 1: Calculational details.
Format: PDF Size: 1.0 MB Download

Cite the Following Article

Interaction-induced zero-energy pinning and quantum dot formation in Majorana nanowires
Samuel D. Escribano, Alfredo Levy Yeyati and Elsa Prada
Beilstein J. Nanotechnol. 2018, 9, 2171–2180. https://doi.org/10.3762/bjnano.9.203

How to Cite

Escribano, S. D.; Yeyati, A. L.; Prada, E. Beilstein J. Nanotechnol. 2018, 9, 2171–2180. doi:10.3762/bjnano.9.203

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 427.1 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Gruñeiro, L.; Alvarado, M.; Yeyati, A. L.; Arrachea, L. Transport features of a topological superconducting nanowire with a quantum dot: Conductance and noise. Physical Review B 2023, 108. doi:10.1103/physrevb.108.045418
  • Leenknegt, L.; Panfilov, A. V.; Dierckx, H. Impact of electrode orientation, myocardial wall thickness, and myofiber direction on intracardiac electrograms: numerical modeling and analytical solutions. Frontiers in physiology 2023, 14, 1213218. doi:10.3389/fphys.2023.1213218
  • Awoga, O. A.; Leijnse, M.; Black-Schaffer, A. M.; Cayao, J. Mitigating disorder-induced zero-energy states in weakly coupled superconductor-semiconductor hybrid systems. Physical Review B 2023, 107. doi:10.1103/physrevb.107.184519
  • Peñaranda, F.; Aguado, R.; Prada, E.; San-Jose, P. Majorana bound states in encapsulated bilayer graphene. SciPost Physics 2023, 14. doi:10.21468/scipostphys.14.4.075
  • Svejstrup, W.; Maiani, A.; Van Hoogdalem, K.; Flensberg, K. Orbital-free approach for large-scale electrostatic simulations of quantum nanoelectronics devices. Semiconductor Science and Technology 2023, 38, 45004–045004. doi:10.1088/1361-6641/acbb9a
  • Marra, P. Majorana nanowires for topological quantum computation. Journal of Applied Physics 2022, 132. doi:10.1063/5.0102999
  • Maiani, A.; Geier, M.; Flensberg, K. Conductance matrix symmetries of multiterminal semiconductor-superconductor devices. Physical Review B 2022, 106. doi:10.1103/physrevb.106.104516
  • Więckowski, A.; Ptok, A.; Mierzejewski, M.; Kupczyński, M. Identification of the Majorana edge modes in tight-binding systems based on the Krylov method. Computer Physics Communications 2021, 269, 108135. doi:10.1016/j.cpc.2021.108135
  • Escribano, S. D.; Prada, E.; Oreg, Y.; Yeyati, A. L. Tunable proximity effects and topological superconductivity in ferromagnetic hybrid nanowires. Physical Review B 2021, 104. doi:10.1103/physrevb.104.l041404
  • Kobiałka, A.; Ptok, A. Majorana bound states and zero-bias conductance peaks in superconductor/semiconductor nanowire devices. Acta Physica Polonica A 2020, 138, 681–685. doi:10.12693/aphyspola.138.681
  • Avila, J.; Prada, E.; San-Jose, P.; Aguado, R. Superconducting islands with topological Josephson junctions based on semiconductor nanowires. Physical Review B 2020, 102, 094518. doi:10.1103/physrevb.102.094518
  • Prada, E.; San-Jose, P.; de Moor, M. W. A.; Geresdi, A.; Lee, E. J. H.; Klinovaja, J.; Loss, D.; Nygård, J.; Aguado, R.; Kouwenhoven, L. P. From Andreev to Majorana bound states in hybrid superconductor-semiconductor nanowires. Nature Reviews Physics 2020, 2, 575–594. doi:10.1038/s42254-020-0228-y
  • Escribano, S. D.; Yeyati, A. L.; Prada, E. Improved effective equation for the Rashba spin-orbit coupling in semiconductor nanowires. Physical Review Research 2020, 2, 033264. doi:10.1103/physrevresearch.2.033264
  • Schulz, F.; Plekhanov, K.; Loss, D.; Klinovaja, J. Majorana bound states in topological insulators with hidden Dirac points. Physical Review Research 2020, 2, 033215. doi:10.1103/physrevresearch.2.033215
  • Thakurathi, M.; Chevallier, D.; Loss, D.; Klinovaja, J. Transport signatures of bulk topological phases in double Rashba nanowires probed by spin-polarized STM. Physical Review Research 2020, 2, 023197. doi:10.1103/physrevresearch.2.023197
  • Gao, X.; Nguyen, T. T.; Gong, X.; Chen, X.; Song, Z.; Du, W.; Chai, R.; Guo, M. A composite material of vacuum heat-treated CQDs/Ce0.7Zr0.3O2 with enhanced charge separation for efficient photocatalytic degradation. Vacuum 2019, 169, 108912. doi:10.1016/j.vacuum.2019.108912
  • Kobiałka, A.; Domański, T.; Ptok, A. Delocalisation of Majorana quasiparticles in plaquette--nanowire hybrid system. Scientific reports 2019, 9, 12933. doi:10.1038/s41598-019-49227-5
  • Woods, B. D.; Chen, J.; Frolov, S.; Stanescu, T. D. Zero-energy pinning of topologically trivial bound states in multiband semiconductor-superconductor nanowires. Physical Review B 2019, 100, 125407. doi:10.1103/physrevb.100.125407
  • Escribano, S. D.; Yeyati, A. L.; Oreg, Y.; Prada, E. Effects of the electrostatic environment on superlattice Majorana nanowires. Physical Review B 2019, 100, 045301. doi:10.1103/physrevb.100.045301
  • Winkler, G. W.; Antipov, A. E.; van Heck, B.; Soluyanov, A. A.; Glazman, L. I.; Wimmer, M.; Lutchyn, R. M. Unified numerical approach to topological semiconductor-superconductor heterostructures. Physical Review B 2019, 99, 245408. doi:10.1103/physrevb.99.245408
Other Beilstein-Institut Open Science Activities