Cite the Following Article
Lead-free hybrid perovskites for photovoltaics
Oleksandr Stroyuk
Beilstein J. Nanotechnol. 2018, 9, 2209–2235.
https://doi.org/10.3762/bjnano.9.207
How to Cite
Stroyuk, O. Beilstein J. Nanotechnol. 2018, 9, 2209–2235. doi:10.3762/bjnano.9.207
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 453.1 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Oukacha, K.; Laânab, L.; Bossi, M. A.; Hajjaji, S. E.; Jaber, B. Investigation of Microstructural and Optical Properties of Sol–Gel Halide-Substituted Rb2SnCl6 Double Perovskite. Journal of Inorganic and Organometallic Polymers and Materials 2025. doi:10.1007/s10904-025-03871-9
- Mhadhbi, N.; Msalmi, R.; Mosconi, E.; Erwann, J.; Khmissi, H.; Orendáč, M.; Čižmár, E.; Naïli, H. Investigation of the electronic, optical and magnetic properties of a novel two-dimensional lead-free perovskite: High visible-light absorption and long-range magnetic ordering. Journal of Alloys and Compounds 2024, 1007, 176450. doi:10.1016/j.jallcom.2024.176450
- Wang, Z.; Huang, D.; Liu, Y.; Lin, H.; Zhang, Z.; Ablez, A.; Zhuang, T.; Du, K.; Li, J.; Huang, X. Vacancy Effect on the Luminescent and Water Responsive Properties of Vacancy-Ordered Double Perovskite Derivatives. Angewandte Chemie (International ed. in English) 2024, 63, e202412346. doi:10.1002/anie.202412346
- Wang, Z.; Huang, D.; Liu, Y.; Lin, H.; Zhang, Z.; Ablez, A.; Zhuang, T.; Du, K.; Li, J.; Huang, X. Vacancy Effect on the Luminescent and Water Responsive Properties of Vacancy‐Ordered Double Perovskite Derivatives. Angewandte Chemie 2024, 136. doi:10.1002/ange.202412346
- Li, C. C.; Yu Huang, T.; Lai, Y. H.; Huang, Y. C.; Shan Tan, C. Lead-free perovskites for flexible optoelectronics. Materials Today Electronics 2024, 8, 100095. doi:10.1016/j.mtelec.2024.100095
- Borah, C. K.; Borah, L. N.; Hazarika, S.; Phukan, A. Modelling and Optimization of "n–i–p" Structured CdS/MASnI3/CdTe Solar Cell with SCAPS-1D for Higher Efficiency. Journal of Electronic Materials 2024, 53, 1942–1955. doi:10.1007/s11664-024-10922-3
- Kalita, T.; Chutia, T.; Tumung, R.; Kalita, D. J. The feasibility of mixed Ga and In hybrid halide perovskites as alternatives to Pb halide perovskites. New Journal of Chemistry 2024, 48, 1390–1398. doi:10.1039/d3nj04558g
- Stroyuk, O.; Raievska, O.; Zahn, D. R. T.; Brabec, C. J. Exploring Highly Efficient Broadband Self-Trapped-Exciton Luminophors: from 0D to 3D Materials. Chemical record (New York, N.Y.) 2023, 24, e202300241. doi:10.1002/tcr.202300241
- Korabel'nikov, D. V.; Zhuravlev, Y. N. Pressure-induced tuning of structure and electronic properties in lead-free hybrid halide perovskite HC(NH2)2SnI3 for photovoltaic solar cells. Materials Science and Engineering: B 2023, 293, 116468. doi:10.1016/j.mseb.2023.116468
- Ramalingam, K.; Rajaraman, T. Structure-bandgap tunability of metal halide perovskites: Synthesis, spectral, single crystal X-ray structural, BVS, CShM and Hirshfeld surface analysis of piperidinium hexahalostannates(IV). Journal of Molecular Structure 2023, 1273, 134285. doi:10.1016/j.molstruc.2022.134285
- Ali, N.; Wang, X.; Wu, H. Lower dimensional nontoxic perovskites: Structures, optoelectronic properties, and applications. Modeling, Characterization, and Production of Nanomaterials; Elsevier, 2023; pp 437–466. doi:10.1016/b978-0-12-819905-3.00016-6
- Tedesco, C.; Malavasi, L. Bismuth-Based Halide Perovskites for Photocatalytic H2 Evolution Application. Molecules (Basel, Switzerland) 2023, 28, 339. doi:10.3390/molecules28010339
- Pinto, F. M.; de Conti, M. C. M. D.; Dey, S.; Velilla, E.; Taft, C. A.; de Almeida La Porta, F. Emerging Metal-Halide Perovskite Materials for Enhanced Solar Cells and Light-Emitting Applications. Engineering Materials; Springer International Publishing, 2022; pp 45–85. doi:10.1007/978-3-031-07622-0_2
- Balabanova, S. P.; Buikin, P. A.; Ilyukhin, A. B.; Rudenko, A. Y.; Dorovatovskii, P. V.; Korlyukov, A. A.; Kotov, V. Y. Crystal Structure and Optical Properties of New Hybrid Halobismuthates of 2,2'-Bipyridinium Derivatives. Russian Journal of Inorganic Chemistry 2022, 67, 1018–1024. doi:10.1134/s0036023622070038
- Bouznif, H.; Hajlaoui, F.; Karoui, K.; Audebrand, N.; Cordier, M.; Roisnel, T.; Zouari, N. A novel 1-D square-pyramidal coordinated palladium (II) hybrid compounds [C9H16N2]PdX4 (X=Cl, Br) showing broadband emission, electrical properties and narrow optical band gap. Journal of Solid State Chemistry 2022, 311, 123149. doi:10.1016/j.jssc.2022.123149
- Yoon, S.; Fett, B.; Frebel, A.; Kroisl, S.; Herbig, B.; Widenmeyer, M.; Balke, B.; Sextl, G.; Mandel, K.; Weidenkaff, A. Sb‐Substituted Cs2AgBiBr6—As Much As It Could Be?—Influence of Synthesis Methods on Sb‐Substitution Level in Cs2AgBiBr6. Energy Technology 2022, 10. doi:10.1002/ente.202200197
- Ren, K.; Yue, S.; Li, C.; Fang, Z.; Gasem, K. A.; Leszczynski, J.; Qu, S.; Wang, Z.; Fan, M. Metal halide perovskites for photocatalysis applications. Journal of Materials Chemistry A 2022, 10, 407–429. doi:10.1039/d1ta09148d
- Pachori, S.; Agarwal, R.; Prakash, B.; Kumari, S.; Verma, A. Fundamental physical properties of non-toxic tin-based formamidinium FASnX3 (X = I, Br, Cl) hybrid halide perovskites: Future opportunities in photovoltaic applications. Energy Technology 2021, 10, 2100709. doi:10.1002/ente.202100709
- Magubane, S. S.; Arendse, C. J.; Ngqoloda, S.; Cummings, F.; Mtshali, C.; Bolokang, A. S. Chemical Vapor Deposited Mixed Metal Halide Perovskite Thin Films. Materials (Basel, Switzerland) 2021, 14, 3526. doi:10.3390/ma14133526
- Jayan, K. D.; Sebastian, V. Modelling and comparative performance analysis of tin based mixed halide perovskite solar cells with IGZO and CuO as charge transport layers. International Journal of Energy Research 2021, 45, 16618–16632. doi:10.1002/er.6909