Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells

Mirco Ruttert, Florian Holtstiege, Jessica Hüsker, Markus Börner, Martin Winter and Tobias Placke
Beilstein J. Nanotechnol. 2018, 9, 2381–2395. https://doi.org/10.3762/bjnano.9.223

Supporting Information

Additional figure, showing SEM micrographs of the physical mixture of Si and C in different magnifications, and a table, summarizing the tap densities of the C:Si composites. Additional figure showing the CEs, EEs and VEs in the charge/discharge current experiments for the Si/C composites with a carbon to silicon ratio of 100:0 (a), 90:10 (b) and 80:20 (c).

Supporting Information File 1: Supporting information.
Format: PDF Size: 560.2 KB Download

Cite the Following Article

Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells
Mirco Ruttert, Florian Holtstiege, Jessica Hüsker, Markus Börner, Martin Winter and Tobias Placke
Beilstein J. Nanotechnol. 2018, 9, 2381–2395. https://doi.org/10.3762/bjnano.9.223

How to Cite

Ruttert, M.; Holtstiege, F.; Hüsker, J.; Börner, M.; Winter, M.; Placke, T. Beilstein J. Nanotechnol. 2018, 9, 2381–2395. doi:10.3762/bjnano.9.223

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 992.9 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Sun, C.; Pan, J.; Zhao, X.; Jiao, C.; Yao, W.; Wang, C.; Fu, X.; Ma, D.; Xue, H.; Liu, J.; Cui, L.; Li, M.; Du, A.; Wang, Q. Effective coating of Si@NiO nanoflowers with nitrogen-doped wheat protein-derived biochar for efficient lithium-ion and lithium-sulfur batteries anode materials. Journal of Alloys and Compounds 2023, 968, 171922. doi:10.1016/j.jallcom.2023.171922
  • Tran Huu, H.; Nguyen, N. P.; Ngo, V. H.; Luc, H. H.; Le, M. K.; Nguyen, M. T.; Le, M. L. P.; Kim, H. R.; Kim, I. Y.; Kim, S. J.; Tran, V. M.; Vo, V. In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes. Beilstein journal of nanotechnology 2023, 14, 751–761. doi:10.3762/bjnano.14.62
  • Sun, C.; Du, A.; Deng, G.; Zhao, X.; Pan, J.; Fu, X.; Liu, J.; Cui, L.; Wang, Q. Naturally nitrogen-doped self-encapsulated biochar materials based on mouldy wheat flour for silicon anode in lithium-ion batteries. Electrochimica Acta 2023, 450, 142269. doi:10.1016/j.electacta.2023.142269
  • Haneke, L.; Pfeiffer, F.; Bärmann, P.; Wrogemann, J.; Peschel, C.; Neumann, J.; Kux, F.; Nowak, S.; Winter, M.; Placke, T. Insights into Electrolytic Pre-Lithiation: A Thorough Analysis Using Silicon Thin Film Anodes. Small (Weinheim an der Bergstrasse, Germany) 2022, 19, e2206092. doi:10.1002/smll.202206092
  • Wu, T.; Ke, Q.; Lu, M.; Pan, P.; Zhou, Y.; Gu, Z.; Cui, G.; Lu, H. Recent Advances in Carbon-Silica Composites: Preparation, Properties, and Applications. Catalysts 2022, 12, 573. doi:10.3390/catal12050573
  • Orthner, H.; Wiggers, H.; Loewenich, M.; Kilian, S.; Bade, S.; Lyubina, J. Direct gas phase synthesis of amorphous Si/C nanoparticles as anode material for lithium ion battery. Journal of Alloys and Compounds 2021, 870, 159315. doi:10.1016/j.jallcom.2021.159315
  • Schmiegel, J.-P.; Nölle, R.; Henschel, J.; Quach, L.; Nowak, S.; Winter, M.; Glorius, F.; Placke, T. Case study of N-carboxyanhydrides in silicon-based lithium ion cells as a guideline for systematic electrolyte additive research. Cell Reports Physical Science 2021, 2, 100327. doi:10.1016/j.xcrp.2021.100327
  • Hsu, Y.-C.; Hsieh, C.-C.; Liu, W.-R. Synthesis of double core-shell carbon/silicon/graphite composite anode materials for lithium-ion batteries. Surface and Coatings Technology 2020, 387, 125528. doi:10.1016/j.surfcoat.2020.125528
  • Zhu, L.-h.; Chen, Y.; Wu, C.; Chu, R.; Zhang, J.; Jiang, H.; Zeng, Y.; Zhang, Y.; Guo, H. Double-carbon protected silicon anode for high performance lithium-ion batteries. Journal of Alloys and Compounds 2020, 812, 151848. doi:10.1016/j.jallcom.2019.151848
  • Ruttert, M.; Siozios, V.; Winter, M.; Placke, T. Mechanochemical Synthesis of Fe–Si-Based Anode Materials for High-Energy Lithium Ion Full-Cells. ACS Applied Energy Materials 2019, 3, 743–758. doi:10.1021/acsaem.9b01926
  • Nölle, R.; Schmiegel, J.-P.; Winter, M.; Placke, T. Tailoring Electrolyte Additives with Synergistic Functional Moieties for Silicon Negative Electrode-Based Lithium Ion Batteries: A Case Study on Lactic Acid O-Carboxyanhydride. Chemistry of Materials 2019, 32, 173–185. doi:10.1021/acs.chemmater.9b03173
  • Mönig, H.; Schmid, M. Renewable energy conversion using nano- and microstructured materials. Beilstein journal of nanotechnology 2019, 10, 771–773. doi:10.3762/bjnano.10.76
  • Zhao, S.; Yue, X.; Xian, X.; Liu, N.; Li, W. Fabrication of Porous Si@C Composites with Core-Shell Structure and Their Electrochemical Performance for Li-ion Batteries. Batteries 2019, 5, 27. doi:10.3390/batteries5010027
  • Ruttert, M.; Siozios, V.; Winter, M.; Placke, T. Synthesis and Comparative Investigation of Silicon Transition Metal Silicide Composite Anodes for Lithium Ion Batteries. Zeitschrift für anorganische und allgemeine Chemie 2019, 645, 248–256. doi:10.1002/zaac.201800436
Other Beilstein-Institut Open Science Activities