Supporting Information
| Supporting Information File 1: Additional data. | ||
| Format: PDF | Size: 1.6 MB | Download |
Cite the Following Article
Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition
Ragesh Kumar T P, Paul Weirich, Lukas Hrachowina, Marc Hanefeld, Ragnar Bjornsson, Helgi Rafn Hrodmarsson, Sven Barth, D. Howard Fairbrother, Michael Huth and Oddur Ingólfsson
Beilstein J. Nanotechnol. 2018, 9, 555–579.
https://doi.org/10.3762/bjnano.9.53
How to Cite
P, R. K. T.; Weirich, P.; Hrachowina, L.; Hanefeld, M.; Bjornsson, R.; Hrodmarsson, H. R.; Barth, S.; Fairbrother, D. H.; Huth, M.; Ingólfsson, O. Beilstein J. Nanotechnol. 2018, 9, 555–579. doi:10.3762/bjnano.9.53
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 889.3 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Solov'yov, A. V.; Verkhovtsev, A. V.; Mason, N. J.; Amos, R. A.; Bald, I.; Baldacchino, G.; Dromey, B.; Falk, M.; Fedor, J.; Gerhards, L.; Hausmann, M.; Hildenbrand, G.; Hrabovský, M.; Kadlec, S.; Kočišek, J.; Lépine, F.; Ming, S.; Nisbet, A.; Ricketts, K.; Sala, L.; Schlathölter, T.; Wheatley, A. E. H.; Solov'yov, I. A. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. Chemical reviews 2024, 124, 8014–8129. doi:10.1021/acs.chemrev.3c00902
- Boeckers, H.; Chaudhary, A.; Martinović, P.; Walker, A. V.; McElwee-White, L.; Swiderek, P. Electron-induced deposition using Fe(CO)4MA and Fe(CO)5 - effect of MA ligand and process conditions. Beilstein journal of nanotechnology 2024, 15, 500–516. doi:10.3762/bjnano.15.45
- Bilgilisoy, E.; Kamali, A.; Gentner, T. X.; Ballmann, G.; Harder, S.; Steinrück, H.-P.; Marbach, H.; Ingólfsson, O. A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2. Beilstein journal of nanotechnology 2023, 14, 1178–1199. doi:10.3762/bjnano.14.98
- Winkler, R.; Brugger-Hatzl, M.; Porrati, F.; Kuhness, D.; Mairhofer, T.; Seewald, L. M.; Kothleitner, G.; Huth, M.; Plank, H.; Barth, S. Pillar Growth by Focused Electron Beam-Induced Deposition Using a Bimetallic Precursor as Model System: High-Energy Fragmentation vs. Low-Energy Decomposition. Nanomaterials (Basel, Switzerland) 2023, 13, 2907. doi:10.3390/nano13212907
- Kamali, A.; Bilgilisoy, E.; Wolfram, A.; Gentner, T. X.; Ballmann, G.; Harder, S.; Marbach, H.; Ingólfsson, O. On the Electron-Induced Reactions of (CH3)AuP(CH3)3: A Combined UHV Surface Science and Gas-Phase Study. Nanomaterials (Basel, Switzerland) 2022, 12, 2727. doi:10.3390/nano12152727
- Shih, P.-Y.; Cipriani, M.; Hermanns, C. F.; Oster, J.; Edinger, K.; Gölzhäuser, A.; Ingólfsson, O. Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6). Beilstein journal of nanotechnology 2022, 13, 182–191. doi:10.3762/bjnano.13.13
- Huth, M.; Porrati, F.; Barth, S. Living up to its potential—Direct-write nanofabrication with focused electron beams. Journal of Applied Physics 2021, 130, 170901. doi:10.1063/5.0064764
- Yu, J.-C.; Abdel-Rahman, M. K.; Fairbrother, D. H.; McElwee-White, L. Charged Particle-Induced Surface Reactions of Organometallic Complexes as a Guide to Precursor Design for Electron- and Ion-Induced Deposition of Nanostructures. ACS applied materials & interfaces 2021, 13, 48333–48348. doi:10.1021/acsami.1c12327
- Bilgilisoy, E.; Thorman, R. M.; Barclay, M.; Marbach, H.; Fairbrother, D. H. Low Energy Electron- and Ion-Induced Surface Reactions of Fe(CO)5 Thin Films. The Journal of Physical Chemistry C 2021, 125, 17749–17760. doi:10.1021/acs.jpcc.1c05826
- Verkhovtsev, A. V.; Solov'yov, I. A.; Solov’yov, A. V. Irradiation-driven molecular dynamics: a review. The European Physical Journal D 2021, 75, 1–12. doi:10.1140/epjd/s10053-021-00223-3
- Barth, S.; Huth, M.; Jungwirth, F. Precursors for direct-write nanofabrication with electrons. Journal of Materials Chemistry C 2020, 8, 15884–15919. doi:10.1039/d0tc03689g
- Fernández-Pacheco, A.; Skoric, L.; de Teresa, J. M.; Pablo-Navarro, J.; Huth, M.; Dobrovolskiy, O. V. Writing 3D Nanomagnets Using Focused Electron Beams. Materials (Basel, Switzerland) 2020, 13, 3774. doi:10.3390/ma13173774
- Thorman, R. M.; Jensen, P. A.; Yu, J.-C.; Matsuda, S. J.; McElwee-White, L.; Ingólfsson, O.; Fairbrother, D. H. Electron-Induced Reactions of Ru(CO)4I2: Gas Phase, Surface, and Electron Beam-Induced Deposition. The Journal of Physical Chemistry C 2020, 124, 10593–10604. doi:10.1021/acs.jpcc.0c01801
- Thorman, R. M.; Matsuda, S. J.; McElwee-White, L.; Fairbrother, D. H. Identifying and Rationalizing the Differing Surface Reactions of Low-Energy Electrons and Ions with an Organometallic Precursor. The journal of physical chemistry letters 2020, 11, 2006–2013. doi:10.1021/acs.jpclett.0c00061
- Cipriani, M.; Thorman, R. M.; Brewer, C. R.; McElwee-White, L.; Ingólfsson, O. Dissociative ionization of the potential focused electron beam induced deposition precursor π-allyl ruthenium(II) tricarbonyl bromide, a combined theoretical and experimental study. The European Physical Journal D 2019, 73, 227. doi:10.1140/epjd/e2019-100151-9
- de Vera, P.; Verkhovtsev, A. V.; Sushko, G. B.; Solov’yov, A. V. Reactive molecular dynamics simulations of organometallic compound W(CO)6 fragmentation. The European Physical Journal D 2019, 73, 215. doi:10.1140/epjd/e2019-100232-9
- Porrati, F.; Barth, S.; Sachser, R.; Jungwirth, F.; Eltsov, M.; Frangakis, A. S.; Huth, M. Binary Mn-Si nanostructures prepared by focused electron beam induced deposition from the precursor SiH 3 Mn(CO) 5. Journal of Physics D: Applied Physics 2018, 51, 455301. doi:10.1088/1361-6463/aae2d3
- dos Santos, M. V. P.; Barth, S.; Béron, F.; Pirota, K. R.; Pinto, A.; Sinnecker, J.; Moshkalev, S. A.; Diniz, J. A.; Utke, I. Magnetoelectrical Transport Improvements of Postgrowth Annealed Iron–Cobalt Nanocomposites: A Possible Route for Future Room-Temperature Spintronics. ACS Applied Nano Materials 2018, 1, 3364–3374. doi:10.1021/acsanm.8b00581
- Swiderek, P.; Marbach, H.; Hagen, C. W. Chemistry for electron-induced nanofabrication. Beilstein journal of nanotechnology 2018, 9, 1317–1320. doi:10.3762/bjnano.9.124
- Carden, W. G.; Lu, H.; Spencer, J. A.; Fairbrother, D. H.; McElwee-White, L. Mechanism-based design of precursors for focused electron beam-induced deposition. MRS Communications 2018, 8, 343–357. doi:10.1557/mrc.2018.77