Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition

Ragesh Kumar T P, Paul Weirich, Lukas Hrachowina, Marc Hanefeld, Ragnar Bjornsson, Helgi Rafn Hrodmarsson, Sven Barth, D. Howard Fairbrother, Michael Huth and Oddur Ingólfsson
Beilstein J. Nanotechnol. 2018, 9, 555–579. https://doi.org/10.3762/bjnano.9.53

Supporting Information

Supporting Information File 1: Additional data.
Format: PDF Size: 1.6 MB Download

Cite the Following Article

Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition
Ragesh Kumar T P, Paul Weirich, Lukas Hrachowina, Marc Hanefeld, Ragnar Bjornsson, Helgi Rafn Hrodmarsson, Sven Barth, D. Howard Fairbrother, Michael Huth and Oddur Ingólfsson
Beilstein J. Nanotechnol. 2018, 9, 555–579. https://doi.org/10.3762/bjnano.9.53

How to Cite

P, R. K. T.; Weirich, P.; Hrachowina, L.; Hanefeld, M.; Bjornsson, R.; Hrodmarsson, H. R.; Barth, S.; Fairbrother, D. H.; Huth, M.; Ingólfsson, O. Beilstein J. Nanotechnol. 2018, 9, 555–579. doi:10.3762/bjnano.9.53

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 889.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Bilgilisoy, E.; Kamali, A.; Gentner, T. X.; Ballmann, G.; Harder, S.; Steinrück, H.-P.; Marbach, H.; Ingólfsson, O. A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2. Beilstein journal of nanotechnology 2023, 14, 1178–1199. doi:10.3762/bjnano.14.98
  • Winkler, R.; Brugger-Hatzl, M.; Porrati, F.; Kuhness, D.; Mairhofer, T.; Seewald, L. M.; Kothleitner, G.; Huth, M.; Plank, H.; Barth, S. Pillar Growth by Focused Electron Beam-Induced Deposition Using a Bimetallic Precursor as Model System: High-Energy Fragmentation vs. Low-Energy Decomposition. Nanomaterials (Basel, Switzerland) 2023, 13, 2907. doi:10.3390/nano13212907
  • Kamali, A.; Bilgilisoy, E.; Wolfram, A.; Gentner, T. X.; Ballmann, G.; Harder, S.; Marbach, H.; Ingólfsson, O. On the Electron-Induced Reactions of (CH3)AuP(CH3)3: A Combined UHV Surface Science and Gas-Phase Study. Nanomaterials (Basel, Switzerland) 2022, 12, 2727. doi:10.3390/nano12152727
  • Shih, P.-Y.; Cipriani, M.; Hermanns, C. F.; Oster, J.; Edinger, K.; Gölzhäuser, A.; Ingólfsson, O. Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6). Beilstein journal of nanotechnology 2022, 13, 182–191. doi:10.3762/bjnano.13.13
  • Huth, M.; Porrati, F.; Barth, S. Living up to its potential—Direct-write nanofabrication with focused electron beams. Journal of Applied Physics 2021, 130, 170901. doi:10.1063/5.0064764
  • Yu, J.-C.; Abdel-Rahman, M. K.; Fairbrother, D. H.; McElwee-White, L. Charged Particle-Induced Surface Reactions of Organometallic Complexes as a Guide to Precursor Design for Electron- and Ion-Induced Deposition of Nanostructures. ACS applied materials & interfaces 2021, 13, 48333–48348. doi:10.1021/acsami.1c12327
  • Bilgilisoy, E.; Thorman, R. M.; Barclay, M.; Marbach, H.; Fairbrother, D. H. Low Energy Electron- and Ion-Induced Surface Reactions of Fe(CO)5 Thin Films. The Journal of Physical Chemistry C 2021, 125, 17749–17760. doi:10.1021/acs.jpcc.1c05826
  • Verkhovtsev, A. V.; Solov'yov, I. A.; Solov’yov, A. V. Irradiation driven molecular dynamics: A review. The European Physical Journal D 2021, 75, 1–12. doi:10.1140/epjd/s10053-021-00223-3
  • Barth, S.; Huth, M.; Jungwirth, F. Precursors for direct-write nanofabrication with electrons. Journal of Materials Chemistry C 2020, 8, 15884–15919. doi:10.1039/d0tc03689g
  • Fernández-Pacheco, A.; Skoric, L.; de Teresa, J. M.; Pablo-Navarro, J.; Huth, M.; Dobrovolskiy, O. V. Writing 3D Nanomagnets Using Focused Electron Beams. Materials (Basel, Switzerland) 2020, 13, 3774. doi:10.3390/ma13173774
  • Thorman, R. M.; Jensen, P. A.; Yu, J.-C.; Matsuda, S. J.; McElwee-White, L.; Ingólfsson, O.; Fairbrother, D. H. Electron-Induced Reactions of Ru(CO)4I2: Gas Phase, Surface, and Electron Beam-Induced Deposition. The Journal of Physical Chemistry C 2020, 124, 10593–10604. doi:10.1021/acs.jpcc.0c01801
  • Thorman, R. M.; Matsuda, S. J.; McElwee-White, L.; Fairbrother, D. H. Identifying and Rationalizing the Differing Surface Reactions of Low-Energy Electrons and Ions with an Organometallic Precursor. The journal of physical chemistry letters 2020, 11, 2006–2013. doi:10.1021/acs.jpclett.0c00061
  • Cipriani, M.; Thorman, R. M.; Brewer, C. R.; McElwee-White, L.; Ingólfsson, O. Dissociative ionization of the potential focused electron beam induced deposition precursor π-allyl ruthenium(II) tricarbonyl bromide, a combined theoretical and experimental study. The European Physical Journal D 2019, 73, 227. doi:10.1140/epjd/e2019-100151-9
  • de Vera, P.; Verkhovtsev, A. V.; Sushko, G. B.; Solov’yov, A. V. Reactive molecular dynamics simulations of organometallic compound W(CO)6 fragmentation. The European Physical Journal D 2019, 73, 215. doi:10.1140/epjd/e2019-100232-9
  • Porrati, F.; Barth, S.; Sachser, R.; Jungwirth, F.; Eltsov, M.; Frangakis, A. S.; Huth, M. Binary Mn-Si nanostructures prepared by focused electron beam induced deposition from the precursor SiH 3 Mn(CO) 5. Journal of Physics D: Applied Physics 2018, 51, 455301. doi:10.1088/1361-6463/aae2d3
  • dos Santos, M. V. P.; Barth, S.; Béron, F.; Pirota, K. R.; Pinto, A.; Sinnecker, J.; Moshkalev, S. A.; Diniz, J. A.; Utke, I. Magnetoelectrical Transport Improvements of Postgrowth Annealed Iron–Cobalt Nanocomposites: A Possible Route for Future Room-Temperature Spintronics. ACS Applied Nano Materials 2018, 1, 3364–3374. doi:10.1021/acsanm.8b00581
  • Swiderek, P.; Marbach, H.; Hagen, C. W. Chemistry for electron-induced nanofabrication. Beilstein journal of nanotechnology 2018, 9, 1317–1320. doi:10.3762/bjnano.9.124
  • Carden, W. G.; Lu, H.; Spencer, J. A.; Fairbrother, D. H.; McElwee-White, L. Mechanism-based design of precursors for focused electron beam-induced deposition. MRS Communications 2018, 8, 343–357. doi:10.1557/mrc.2018.77
  • Unlu, I.; Spencer, J. A.; Johnson, K. R.; Thorman, R. M.; Ingólfsson, O.; McElwee-White, L.; Fairbrother, D. H. Electron induced surface reactions of (η5-C5H5)Fe(CO)2Mn(CO)5, a potential heterobimetallic precursor for focused electron beam induced deposition (FEBID). Physical chemistry chemical physics : PCCP 2018, 20, 7862–7874. doi:10.1039/c7cp07994j
  • Huth, M.; Porrati, F.; Dobrovolskiy, O. V. Focused electron beam induced deposition meets materials science. Microelectronic Engineering 2018, 185-186, 9–28. doi:10.1016/j.mee.2017.10.012
Other Beilstein-Institut Open Science Activities