Anchoring Fe3O4 nanoparticles in a reduced graphene oxide aerogel matrix via polydopamine coating

Błażej Scheibe, Radosław Mrówczyński, Natalia Michalak, Karol Załęski, Michał Matczak, Mateusz Kempiński, Zuzanna Pietralik, Mikołaj Lewandowski, Stefan Jurga and Feliks Stobiecki
Beilstein J. Nanotechnol. 2018, 9, 591–601. https://doi.org/10.3762/bjnano.9.55

Supporting Information

Supporting Information contains XRD patterns of graphite, graphene oxide and Fe3O4 nanoparticles, Raman spectra of PDA and PDA@Fe3O4 nanoparticles, FTIR spectrum of PDA@Fe3O4 nanoparticles, XPS survey spectrum and deconvoluted C 1s, O 1s and N 1s spectra of graphene oxide, ZFC and FC temperature dependences of magnetic susceptibility for rGO-Fe3O4 aerogel under the applied field of 100 Oe, Table with XPS peak assignments, positions (eV) and percentage contributions (%).

Supporting Information File 1: Additional information.
Format: PDF Size: 624.0 KB Download

Cite the Following Article

Anchoring Fe3O4 nanoparticles in a reduced graphene oxide aerogel matrix via polydopamine coating
Błażej Scheibe, Radosław Mrówczyński, Natalia Michalak, Karol Załęski, Michał Matczak, Mateusz Kempiński, Zuzanna Pietralik, Mikołaj Lewandowski, Stefan Jurga and Feliks Stobiecki
Beilstein J. Nanotechnol. 2018, 9, 591–601. https://doi.org/10.3762/bjnano.9.55

How to Cite

Scheibe, B.; Mrówczyński, R.; Michalak, N.; Załęski, K.; Matczak, M.; Kempiński, M.; Pietralik, Z.; Lewandowski, M.; Jurga, S.; Stobiecki, F. Beilstein J. Nanotechnol. 2018, 9, 591–601. doi:10.3762/bjnano.9.55

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.5 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Cervantes, O.; Lopez, Z. D. R.; Casillas, N.; Knauth, P.; Checa, N.; Cholico, F. A.; Hernandez-Gutiérrez, R.; Quintero, L. H.; Paz, J. A.; Cano, M. E. A Ferrofluid with Surface Modified Nanoparticles for Magnetic Hyperthermia and High ROS Production. Molecules (Basel, Switzerland) 2022, 27, 544. doi:10.3390/molecules27020544
  • Maruthupandy, M.; Rajivgandhi, G.; Muneeswaran, T.; Anand, M.; Quero, F. Highly efficient antibacterial activity of graphene/chitosan/magnetite nanocomposites against ESBL-producing Pseudomonas aeruginosa and Klebsiella pneumoniae. Colloids and surfaces. B, Biointerfaces 2021, 202, 111690. doi:10.1016/j.colsurfb.2021.111690
  • Illés, E.; Tombácz, E.; Hegedűs, Z.; Szabó, T. Tunable Magnetic Hyperthermia Properties of Pristine and Mildly Reduced Graphene Oxide/Magnetite Nanocomposite Dispersions. Nanomaterials (Basel, Switzerland) 2020, 10, 2426. doi:10.3390/nano10122426
  • Wychowaniec, J. K.; Litowczenko, J.; Tadyszak, K.; Natu, V.; Aparicio, C.; Peplińska, B.; Barsoum, M. W.; Otyepka, M.; Scheibe, B. Unique cellular network formation guided by heterostructures based on reduced graphene oxide - Ti3C2Tx MXene hydrogels. Acta biomaterialia 2020, 115, 104–115. doi:10.1016/j.actbio.2020.08.010
  • Han, B.; Gao, Y.-Y.; Zhang, Y.-L.; Liu, Y.-Q.; Ma, Z.-C.; Guo, Q.; Zhu, L.; Chen, Q.-D.; Sun, H.-B. Multi-field-coupling energy conversion for flexible manipulation of graphene-based soft robots. Nano Energy 2020, 71, 104578. doi:10.1016/j.nanoen.2020.104578
  • Deshmukh, S.; Banerjee, D.; Bhattacharya, G.; Fishlock, S. J.; Barman, A.; McLaughlin, J.; Roy, S. S. Red Mud-Reduced Graphene Oxide Nanocomposites for the Electrochemical Sensing of Arsenic. ACS Applied Nano Materials 2020, 3, 4084–4090. doi:10.1021/acsanm.0c00165
  • Liu, Q.; Shiqi, H.; Yang, Z.; Zhang, X.; Jianlong, G. Green Synthesis of Composite Graphene Aerogels with Robust Magnetism for Effective Water Remediation. Materials (Basel, Switzerland) 2019, 12, 4106. doi:10.3390/ma12244106
  • Amesimeku, J.; Song, W.; Wang, C. Fabrication of electrically conductive and improved UV-resistant aramid fabric via bio-inspired polydopamine and graphene oxide coating. The Journal of The Textile Institute 2019, 110, 1484–1492. doi:10.1080/00405000.2019.1607453
  • Ghosh, B.; Sarma, S.; Pontsho, M.; Ray, S. C. Tuning of magnetic behaviour in nitrogenated graphene oxide functionalized with iron oxide. Diamond and Related Materials 2018, 89, 35–42. doi:10.1016/j.diamond.2018.08.006
Other Beilstein-Institut Open Science Activities